File: example.rst

package info (click to toggle)
pyvo 1.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,964 kB
  • sloc: python: 16,778; xml: 9,417; makefile: 113
file content (288 lines) | stat: -rw-r--r-- 10,571 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
.. _mivot-examples:

************************************************************
MIVOT (``pyvo.mivot``): How to use annotated data - Examples
************************************************************

Photometric Properties Readout
==============================

This example is based on VOTables provided by the ``XTapDB`` service.
This service exposes the slim `4XMM dr14 catalogue <http://xmmssc.irap.omp.eu/>`_.
It  is able to map query responses on the fly to the MANGO data model.
The annotation process only annotates the columns that are selected by the query.

The following properties are supported:

- ``mango:Brightness`` to which fluxes are mapped
- ``mango:Color`` to which hardness ratio are mapped
- ``mango:EpochPosition`` to which positions and first observation  dates are mapped
- ``mango:Status`` to which quality flags of the source detections are mapped

A specific response format (``application/x-votable+xml;content=mivot``) must be set in order
to tell the server to annotate the queried data.

(*Please read the comment inside the code snippet carefully to fully understand the process*)

.. doctest-skip::

   >>> from pyvo.utils import activate_features
   >>> from pyvo.dal import TAPService
   >>> from pyvo.mivot.utils.xml_utils import XmlUtils
   >>> from pyvo.mivot.viewer.mivot_viewer import MivotViewer
   >>>
   >>> # Enable MIVOT-specific features in the pyvo library
   >>> activate_features("MIVOT")
   >>>
   >>> service = TAPService('https://xcatdb.unistra.fr/xtapdb')
   >>> result = service.run_sync(
   ...     """
   ...     SELECT TOP 5 * FROM "public".mergedentry
   ...     """,
   ...     format="application/x-votable+xml;content=mivot"
   ...     )
   >>>
   >>> # The MIVOT viewer generates the model view of the data
   >>> m_viewer = MivotViewer(result, resolve_ref=True)
   >>>
   >>> # Print out the Mivot annotations read out of the VOtable
   >>> # This statement is just for a pedagogic purpose (access to a private attribute)
   >>> XmlUtils.pretty_print(m_viewer._mapping_block)


In this first step we just queried the service and we built the object that will process the Mivot annotations.
The Mivot block printing output is too long to be listed here. However, the screenshot below shows its shallow structure.

.. image:: _images/xtapdbXML.png
   :width: 500
   :alt: Shallow structure of the annotation block.

- The GLOBALS section contains all the coordinate systems (in a wide sense). This includes the allowed values for
  the detection flags and the photometric calibrations.
- The TEMPLATES section contains the objects to which table data is mapped. In this example, there is one
  ``MangoObject`` instance which holds all the mapped properties.

At instantiation time, the viewer reads the first data row, which must exist,
in order to construct the Python objects that reflect the mapped models and
to make the data available through them.

.. doctest-skip::

   >>> # Discover the Python objects matching the TEMPLATES content
   >>> for dm_instance in m_viewer.dm_instances;
   >>>     print(dm_instance)
   <MivotInstance: dmtype="mango:MangoObject">

The annotations are consumed by this dynamic Python object which leaves are set with the data of the current row.
You can explore the structure of this object by using standard object paths as shown below.

Now, we can iterate through the table data and retrieve an updated Mivot instance for each row.

.. doctest-skip::

   >>> mango_object = m_viewer.dm_instances[0]
   >>> while m_viewer.next_row_view():
   >>>     if mango_object.dmtype == "mango:MangoObject":
   >>>         print(f"Read source {mango_object.identifier.value} {mango_object.dmtype}")
   >>>         for mango_property in mango_object.propertyDock:
   >>>             if  mango_property.dmtype == "mango:Brightness":
   >>>                 if mango_property.value.value:
   >>>                     mag_value = mango_property.value.value
   >>>                     mag_error = mango_property.error.sigma.value
   >>>                     phot_cal = mango_property.photCal
   >>>                     spectral_location = phot_cal.photometryFilter.spectralLocation
   >>>                     mag_filter = phot_cal.identifier.value
   >>>                     spectral_location = phot_cal.photometryFilter.spectralLocation
   >>>                     mag_wl = spectral_location.value.value
   >>>                     sunit = spectral_location.unitexpression.value
   >>>                     print(f"  flux at {mag_wl} {sunit} (filter {mag_filter}) is {mag_value:.2e} +/- {mag_error:.2e}")
   Read source 4XMM J054329.3-682106 mango:MangoObject
      flux at 0.35 keV (filter XMM/EPIC/EB1) is 8.35e-14 +/- 3.15e-14
      flux at 0.75 keV (filter XMM/EPIC/EB2) is 3.26e-15 +/- 5.45e-15
      flux at 6.1 keV (filter XMM/EPIC/EB8) is 8.68e-14 +/- 6.64e-14
   ...
   ...

The same code can easily be connected with matplotlib to plot SEDs as shown below (code not provided).


.. image:: _images/xtapdbSED.png
   :width: 500
   :alt: XMM SED

It is to be noted that the current table row keeps available through the Mivot viewer.

.. code-block:: python

   row = m_viewer.table_row


.. important::
   The code shown in this example can be used with any VOTable that has data mapped to MANGO.
   It contains no features specific to the XtatDB output.

   This is exactly the purpose of the MIVOT/MANGO abstraction layer: to allow the same processing
   to be applied to any annotated VOTable.

   The same client code can be reused in many places with many datasets, provided they are annotated.

EpochPosition Property Readout
==============================

This example is based on a VOtable resulting on a Vizier cone search.
This service maps the data to  the ``EpochPosition`` MANGO property,
which models a full source's  astrometry at a given date.


.. warning::
   At the time of writing (Q1 2025), Vizier only mapped positions and proper motions (when  available),
   and the definitive epoch class had not been adopted.
   Therefore, this implementation may differ a little bit from the standard model.

   Vizier does not wrap the source properties in a MANGO object,
   but rather lists them in the Mivot *TEMPLATES*.
   The annotation reader supports both designs.

In the first step below, we run a standard cone search query by using the standard PyVO API.
Once the query is finished, we can get a reference to the object that will process the Mivot annotations.

.. doctest-skip::

   >>> import astropy.units as u
   >>> from astropy.coordinates import SkyCoord
   >>> from pyvo.dal.scs import SCSService
   >>> from pyvo.utils import activate_features
   >>> from pyvo.mivot.viewer.mivot_viewer import MivotViewer
   >>> from pyvo.mivot.features.sky_coord_builder import SkyCoordBuilder
   >>>
   >>> # Enable MIVOT-specific features in the pyvo library
   >>> activate_features("MIVOT")
   >>>
   >>> scs_srv = SCSService("https://vizier.cds.unistra.fr/viz-bin/conesearch/V1.5/I/239/hip_main")
   >>>
   >>> query_result = scs_srv.search(
   ...     pos=SkyCoord(ra=52.26708 * u.degree, dec=59.94027 * u.degree, frame='icrs'),
   ...     radius=0.5)
   >>>
   >>> # The MIVOT viewer generates the model view of the data
   >>> m_viewer = MivotViewer(query_result, resolve_ref=True)

We can now discover which data model classes the data is mapped to.

.. doctest-skip::

   >>> # Get a set of Python objects matching the TEMPLATES content and
   >>> # which leaves are set with the values of the first row
   >>> for dm_instance in m_viewer.dm_instances;
   >>>     print(dm_instance)
   <MivotInstance: dmtype="mango:EpochPosition">

The first instance can be accessed by the ``m_viewer.dm_instance`` getter.
This is a simple shorcut aiming at simplifying the code.

.. doctest-skip::

   >>> dm_instance = m_viewer.dm_instance
   >>> print(dm_instance.dmtype)
   mango:EpochPosition

We can also provide a complete instance representation that includes all fields in the entire hierarchy.

.. doctest-skip::

   >>> # Print out the json serialization of the Python object
   >>> print(repr(dm_instance))
   {
	  "dmtype": "mango:EpochPosition",
	  "longitude": {
	    "dmtype": "ivoa:RealQuantity",
	    "value": 51.64272638,
	    "unit": "deg"
	  },
	  "latitude": {
	    "dmtype": "ivoa:RealQuantity",
	    "value": 60.28156089,
	    "unit": "deg"
	  },
	  "pmLongitude": {
	    "dmtype": "ivoa:RealQuantity",
	    "value": 13.31,
	    "unit": "mas/yr"
	  },
	  "pmLatitude": {
	    "dmtype": "ivoa:RealQuantity",
	    "value": -23.43,
	    "unit": "mas/yr"
	  },
	  "epoch": {
	    "dmtype": "ivoa:RealQuantity",
	    "value": 1991.25,
	    "unit": "yr"
	  },
	  "parallax": {
	    "dmtype": "ivoa:RealQuantity",
	    "value": 5.12,
	    "unit": "mas"
	  },
	  "spaceSys": {
	    "dmtype": "coords:SpaceSys",
	    "dmid": "SpaceFrame_ICRS",
	    "dmrole": "mango:EpochPosition.spaceSys",
	    "frame": {
	      "dmrole": "coords:PhysicalCoordSys.frame",
	      "dmtype": "coords:SpaceFrame",
	      "spaceRefFrame": {
	        "dmtype": "ivoa:string",
	        "value": "ICRS"
          }
        }
      }
   }

The reader can transform ``EpochPosition`` instances into ``SkyCoord`` instances.
These can then be used for further scientific processing.

.. doctest-skip::

   >>> while m_viewer.next_row_view():
   >>>    mango_property = m_viewer.dm_instance
   >>>    if mango_property.dmtype == "mango:EpochPosition":
   >>>        scb = SkyCoordBuilder(mango_property)
   >>>        # do whatever process with the SkyCoord object
   >>>        print(scb.build_sky_coord())

.. important::
   Similar to the previous example, this code can be used with any VOTable with data mapped to MANGO.
   It contains no features specific to the Vizier output.

   It avoids the need for users to build SkyCoord objects by hand from VOTable fields,
   which is never an easy task.

Homework
========

Simbad has released (Q3 2025) an annotated version of its Cone Search.
It's a good case to exercise this API.


.. code-block:: python

   SERVER = "https://simbad.cds.unistra.fr/cone?"
   VERB = 2
   RA = 269.452076* u.degree
   DEC = 4.6933649* u.degree
   SR = 0.1* u.degree
   MAXREC = 100
   RESPONSEFORMAT = "mivot"

   scs_srv = SCSService(SERVER)

   query_result = scs_srv.search(
       pos=SkyCoord(ra=RA, dec=DEC, frame='icrs'),
       radius=SR,
       verbosity=VERB,
       RESPONSEFORMAT=RESPONSEFORMAT,
       MAXREC=MAXREC)


*The next section provides some tips to use the API documented in the* :ref:`annoter page <mivot-annoter>`.