File: index.rst

package info (click to toggle)
pywavelets 0.1.7~svn97-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 2,408 kB
  • ctags: 1,492
  • sloc: ansic: 3,375; python: 1,910; makefile: 44
file content (1082 lines) | stat: -rw-r--r-- 26,988 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
=================================================
PyWavelets - Discrete Wavelet Transform in Python
=================================================

User Guide
==========

:Author: Filip Wasilewski
:Contact: filip.wasilewski@gmail.com
:Version: 0.1.6
:Status: alpha
:Date: |date|
:License: `MIT`_

:Abstract: |pywt| is a `Python`_ module for computing forward and inverse
  1D and 2D Discrete Wavelet Transform, Stationary Wavelet Transform and Wavelet Packets
  decomposition and reconstruction.
  This document is a User Guide to |pywt|.

.. |date| date:: %Y-%m-%d %H:%M
.. _MIT: COPYING.txt

.. meta::
   :keywords: pywavelets wavelets discrete wavelet transform Python module dwt idwt swt wavelet packets
   :description lang=en: Python discrete wavelet transform module

.. contents:: Table of Contents
    :local:
    :depth: 2

.. section-numbering:: 
    :depth: 3
    :suffix: .
    
Introduction
------------

Requirements
~~~~~~~~~~~~

|pywt| was originally developed using `MinGW`_ C compiler, `Pyrex`_ and
`Python`_ 2.4 on 32-bit WindowsXP platform. Recent release adds support
for Python 2.5. 

The only external requirement is a recent version of
`NumPy`_ numeric array module.

.. _Pyrex: http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
.. _MinGW: http://www.mingw.org/
.. _NumPy: http://www.scipy.org/
.. _Python: http://python.org/ 


Download
~~~~~~~~

Current release, including source and binary versions for Windows, is available
for download from Python Cheese Shop directory at:

    http://cheeseshop.python.org/pypi/PyWavelets/

The latest *development* version can be downloaded from
`wavelets.scipy.org`_ SVN `repository`_::

    svn co http://wavelets.scipy.org/svn/multiresolution/pywt/trunk pywt

.. _`wavelets.scipy.org`: http://wavelets.scipy.org
.. _`repository`: http://wavelets.scipy.org/svn/multiresolution/pywt/trunk


Install
~~~~~~~

The most convenient way to install PyWavelets is to use setuptools_
`Easy Install`_ manager::

    easy_install PyWavelets

.. _setuptools: http://peak.telecommunity.com/DevCenter/setuptools
.. _`Easy Install`: http://peak.telecommunity.com/DevCenter/EasyInstall#using-easy-install

Please note that in order to build |pywt| from source code you will
need a working C compiler and, in case of source code modifications,
an *updated* version of Pyrex from

    http://codespeak.net/svn/lxml/pyrex/

SVN repository, which includes features and bug fixes not yet available
in the regular Pyrex distribution.

Then in the shell prompt in the |pywt| source code directory type::

    python setupegg.py install

or if using the default distutils manager::

    python setup.py install

For Windows users there is also standard binary installer available
in the Cheese Shop repository. Just download and execute it.

To verify the installation process try running tests and examples
from `tests` and `demo` directories included in the source distribution.
Note that some examples need `matplotlib`_ installed.

.. _matplotlib: http://matplotlib.sourceforge.net


License
~~~~~~~

|pywt| is free Open Source software available under `MIT license`_. Just do no evil.

.. _MIT license: COPYING.txt

Contact
~~~~~~~

Feel free to contact me directly at filip.wasilewski@gmail.com.
Comments, bug reports and fixes are welcome.

You can also use the wiki and trac system available at `wavelets.scipy.org`_
to improve documentation, post cookbook recipes or submit enhancement proposals
or bug reports.


Wavelets
--------

Wavelet ``families``
~~~~~~~~~~~~~~~~~~~~

The ``families()`` function returns names of available built-in wavelet families.
Currently the following wavelet families with over seventy wavelets are available:

* Haar (``haar``)
* Daubechies (``db``)
* Symlets (``sym``)
* Coiflets (``coif``)
* Biorthogonal (``bior``)
* Reverse biorthogonal (``rbio``)
* `"Discrete"` FIR approximation of Meyer wavelet (``dmey``)

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> print pywt.families()
    ['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']

.. _`wavelist()`:

Built-in wavelets - ``wavelist``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``wavelist(short_name=None)`` function returns list of available
wavelet names.

If ``short_name`` is None, then names of all implemented wavelets is returned,
otherwise the function returns names of wavelets from given family name.

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> print pywt.wavelist('coif')
    ['coif1', 'coif2', 'coif3', 'coif4', 'coif5']


.. _Wavelet:

``Wavelet`` object
~~~~~~~~~~~~~~~~~~~~

``Wavelet(name, filter_bank=None)`` object describe properties of a wavelet
identified by ``name``. 
In order to use a built-in wavelet the parameter ``name`` must be a valid
name from `wavelist()`_ list. Otherwise a `filter_bank`_ argument must be provided.

name
  Wavelet name

.. _`filter_bank`:

filter_bank
  Use user supplied filter bank instead of built-in ``Wavelet``.
  The filter bank object must implement the
  `get_filters_coeffs()`_ method,
  which returns a list of filters (dec_lo, dec_hi, rec_lo, rec_hi).
  Other Wavelet object can also be used as a filter bank. See section
  on `using custom wavelets`_ for more information.
  
dec_lo, dec_hi
  Decomposition filters values.

rec_lo, rec_hi
  Reconstruction filters values.

dec_len
  Decomposition filter length.

rec_len
  Reconstruction filter length.

.. _`get_filters_coeffs()`:

get_filters_coeffs()
  Returns quadrature mirror filters list for current wavelet (dec_lo, dec_hi, rec_lo, rec_hi)

other properties:
  - family_name
  - short_name
  - orthogonal
  - biorthogonal
  - symmetry - ``asymmetric``, ``near symmetric``, ``symmetric``
  - vanishing_moments_psi
  - vanishing_moments_phi

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> wavelet = pywt.Wavelet('db1')
    >>> print wavelet
    Wavelet db1
      Family name:    Daubechies
      Short name:     db
      Filters length: 2
      Orthogonal:     True
      Biorthogonal:   True
      Symmetry:       asymmetric
    >>> print wavelet.dec_lo, wavelet.dec_hi
    [0.70710678118654757, 0.70710678118654757] [-0.70710678118654757, 0.70710678118654757]
    >>> print wavelet.rec_lo, wavelet.rec_hi
    [0.70710678118654757, 0.70710678118654757] [0.70710678118654757, -0.70710678118654757]


``wavefun``
""""""""""""

The ``wavefun(level)`` function can be used to calculates approximations of wavelet function (*psi*)
and associated scaling function (*phi*) at given level of refinement.

For orthogonal wavelet returns scaling and wavelet function.

.. class:: example

  .. code-block:: Python

    >>> import pywt
    >>> wavelet = pywt.Wavelet('db2')
    >>> phi, psi = wavelet.wavefun(level=5)

For biorthogonal wavelet returns scaling and wavelet function both for decomposition
and reconstruction.

.. class:: example

  .. code-block:: Python

    >>> import pywt
    >>> wavelet = pywt.Wavelet('bior1.1')
    >>> phi_d, psi_d, phi_r, psi_r = wavelet.wavefun(level=5)

.. See also plots of Daubechies and Symlets wavelet familes generated with ``wavefun`` function:

    - `db.png`_
    - `sym.png`_


.. _`using custom wavelets`:

Using custom wavelets
~~~~~~~~~~~~~~~~~~~~~~

|pywt| comes with `long list`_ of the most popular wavelets built-in and ready to use.
If there is a need of using a specific wavelet which is not included in the list it is
very easy to create one.
Just pass an object of a class implementing ``get_filters_coeffs()`` method
as a `filter_bank`_ argument of Wavelet_ constructor.

.. _`long list`: `wavelist()`_

The ``get_filters_coeffs()`` method must return a list of four filters:
lowpass decomposition, highpass decomposition, lowpass reconstruction and
highpass reconstruction filter, just as the `get_filters_coeffs()`_ method 
of the Wavelet_ class.

A Wavelet object created in this way is a standard Wavelet_ object and can be used
as any other Wavelet_ object.

.. class:: example

  Example:

  .. code-block:: Python
  
    >>> import pywt, math
    >>> class HaarFilterBank(object):
    ...     def get_filters_coeffs(self):
    ...         c = math.sqrt(2)/2
    ...         dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
    ...         return [dec_lo, dec_hi, rec_lo, rec_hi]
    >>> myWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=HaarFilterBank())


Discrete Wavelet Transform (DWT)
----------------------------------

Wavelet transform has recently became very popular 
when it comes to analysis, denoising and compression of
signals and images.


.. _dwt:

Single level ``dwt``
~~~~~~~~~~~~~~~~~~~~

The ``dwt`` function is used to perform single level,
one dimensional Discrete Wavelet Transform.
::

  (cA, cD) = dwt(data, wavelet, mode='sym')
  
data
  |data|

wavelet
  |wavelet_arg|

mode
  |mode|

The transform coefficients are returned as two arrays containing
approximation (cA) and detail (cD) coefficients respectively.
Length of returned arrays depends on selected `mode`_ - see `dwt_coeff_len`_:

* for all modes_ except `periodization`_::

    len(cA) == len(cD) == floor((len(data) + wavelet.dec_len - 1) / 2)

* for `periodization`_ mode (`"per"`)::
  
    len(cA) == len(cD) == ceil(len(data) / 2)

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db1')
    >>> print cA
    [ 2.12132034  4.94974747  7.77817459]
    >>> print cD
    [-0.70710678 -0.70710678 -0.70710678]

.. _wavedec:

Multilevel decomposition using ``wavedec``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`(Please note the mode and level arguments order change in 0.1.6 version.)`

The ``wavedec`` function performs 1D multilevel Discrete Wavelet Transform
decomposition of given signal and returns ordered list of coefficients arrays
``[cAn, cDn, cDn-1, ..., cD2, cD1]``, where ``n`` denotes the level of decomposition.
The first element (``cAn``) of the result is approximation coefficients array and
the following elements (``cDn`` - ``cD1``) are details coefficients arrays.

::

  wavedec(data, wavelet, mode='sym', level=None)

data
  |data|

wavelet
  |wavelet_arg|

mode
  |mode|

level
  Decomposition levels count. 
  If the level is None, then full decomposition up to 
  level computed with `dwt_max_level`_ function for corresponding
  data and wavelet lengths is performed. 

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
    >>> cA2, cD2, cD1 = coeffs
    >>> print cD1
    [-0.70710678 -0.70710678 -0.70710678 -0.70710678]
    >>> print cD2
    [-2. -2.]
    >>> print cA2
    [  5.  13.]
 
.. _`dwt_max_level`:

Maximum decomposition level - ``dwt_max_level``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``dwt_max_level`` function can be used to
compute the maximum useful level of decomposition
for given ``input data length`` and ``wavelet filter length``.

::

  dwt_max_level(data_len, filter_len)

The returned value equals to::

  floor(log(data_len/(filter_len-1))/log(2))

Although the maximum decomposition level can be quite high for long signals,
usually smaller values are chosen.

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> w = pywt.Wavelet('sym5')
    >>> print pywt.dwt_max_level(data_len = 1000, filter_len = w.dec_len)
    6

.. _`dwt_coeff_len`:

Result coefficients length - ``dwt_coeff_len``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Based on input data length, Wavelet decomposition filter length and signal extension `mode`_,
the ``dwt_coeff_len`` function calculates length of result coefficients arrays after `dwt`_.

::

  dwt_coeff_len(data_len, filter_len, mode)

For `periodization`_ mode this equals::

  ceil(data_len / 2)

which is the lowest possible length guaranteeing perfect reconstruction.

For other `modes`_::

  floor((data_len + filter_len - 1) / 2)

.. _mode:
.. _MODES:

Signal extension modes - ``MODES``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To handle problem of border distortion while performing DWT_,
one of several signal extension modes can be selected.

* ``zpd`` - **zero-padding** - signal is extended by adding zero samples::

    0  0 | x1 x2 ... xn | 0  0

* ``cpd`` - **constant-padding** - edge values are used::
  
    x1 x1 | x1 x2 ... xn | xn xn


* ``sym`` - **symmetric-padding** - signal is extended by *mirroring* samples::

    x2 x1 | x1 x2 ... xn | xn xn-1

.. _`periodic-padding`:

* ``ppd`` - **periodic-padding** - signal is treated as periodic::
  
    xn-1 xn | x1 x2 ... xn | x1 x2

* ``sp1`` - **smooth-padding** - signal is extended according to first derivatives
  calculated on the edges
  
DWT_ performed for these extension modes is slightly redundant, but ensure
the perfect reconstruction. To receive the smallest number of coefficients,
DWT_ can be computed with `periodization`_ mode

.. _`periodization`:

* ``per`` - **periodization** - is like `periodic-padding`_ but gives the smallest possible
  number of decomposition coefficients. IDWT_ must be performed with the same mode to
  ensure perfect reconstruction.

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> print pywt.MODES.modes
    ['zpd', 'cpd', 'sym', 'ppd', 'sp1', 'per']


Notice that you can use either of the following forms:  

.. code-block:: Python

  >>> import pywt
  >>> (a, d) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
  >>> (a, d) = pywt.dwt([1,2,3,4,5,6], pywt.Wavelet('db2'), pywt.MODES.sp1)

Note that extending data in context of |pywt| does not really mean reallocating
memory and copying values. Instead of that the extra values are computed only
when needed. This feature saves extra memory and CPU resources and helps to avoid
page swapping when handling relatively big data arrays on computers with low
physical memory.

Inverse Discrete Wavelet Transform (IDWT)
------------------------------------------

.. _idwt:

Single level ``idwt``
~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``idwt`` function reconstructs data from given coefficients by performing
single level Inverse Discrete Wavelet Transform.

::

  idwt(cA, cD, wavelet, mode='sym', correct_size=0)

cA
  approximation coefficients.

cD
  detail coefficients.

wavelet
  |wavelet_arg|

mode
  |mode| This is only important when DWT was performed in `periodization`_ mode.

correct_size
  additional option. Under normal conditions (all data lengths dyadic) Ca and cD
  coefficients lists must have the same lengths. With correct_size set to True,
  length of cA may be greater by one than length of cA.
  This option is very useful when doing multilevel decomposition and reconstruction
  of non-dyadic length signals.

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
    >>> print pywt.idwt(cA, cD, 'db2', 'sp1')
    [ 1.  2.  3.  4.  5.  6.]

One of the *cA* and *cD* arguments can be *None*. In that situation
the reconstruction will be performed using only the other one.

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> (cA, cD) = pywt.dwt([1,2,3,4,5,6], 'db2', 'sp1')
    >>> A = pywt.idwt(cA, None, 'db2', 'sp1')
    >>> D = pywt.idwt(None, cD, 'db2', 'sp1')
    >>> print A + D
    [ 1.  2.  3.  4.  5.  6.]


.. _waverec:


Multilevel reconstruction using ``waverec``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Performs multilevel reconstruction of signal from given coefficient list.

::

  waverec(coeffs, wavelet, mode='sym')

coeffs
  coefficients list must be in the form like returned from `wavedec`_ decomposition::
  
  [cAn, cDn, cDn-1, ..., cD2, cD1]

wavelet
  |wavelet_arg|
mode
  |mode|

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db2', level=2)
    >>> print pywt.waverec(coeffs, 'db2')
    [ 1.  2.  3.  4.  5.  6.  7.  8.]

.. _upcoef:

Direct reconstruction with ``upcoef``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Direct reconstruction from coefficients.

::
  
  upcoef(part, coeffs, wavelet, level=1, take=0)

part
  defines coefficients type:

  - **'a'** - approximations reconstruction is performed
  - **'d'** - details reconstruction is performed

coeffs
  coefficients array.
wavele
  |wavelet|
level
  if *level* is specified then multilevel reconstruction is performed
take
  if *take* is specified then only the central part of length equal to
  *'take'* is returned.
  
.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt
    >>> data = [1,2,3,4,5,6]
    >>> (cA, cD) = pywt.dwt(data, 'db2', 'sp1')
    >>> print pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
    [-0.25       -0.4330127   1.          2.          3.          4.          5.
      6.          1.78589838 -1.03108891]
    >>> n = len(data)
    >>> print pywt.upcoef('a',cA,'db2',take=n) + pywt.upcoef('d',cD,'db2',take=n)
    [ 1.  2.  3.  4.  5.  6.]


2D DWT and IDWT
---------------

.. _dwt2:

Single level ``dwt2``
~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``dwt2`` function performs single level 2D Discrete Wavelet Transform.

::

  dwt2(data, wavelet, mode='sym')

data
  2D input data 

wavelet
  |wavelet_arg|

mode
  |mode| This is only important when DWT was performed in `periodization`_ mode.

Returns one average and three details 2D coefficients arrays. The coefficients
arrays are organized in tuples in the following form::

  (cA, (cH, cV, cD)),

where ``cA``, ``cH``, ``cV``, ``cD`` denotes approximation,
horizontal detail, vertical detail
and diagonal detail coefficients respectively.

.. class:: example

  Example:

  .. code-block:: Python
  
    >>> import pywt, numpy
    >>> data = numpy.ones((4,4), dtype=numpy.float64)
    >>> coeffs = pywt.dwt2(data, 'haar')
    >>> cA, (cH, cV, cD) = coeffs
    >>> print cA
    [[ 2.  2.]
     [ 2.  2.]]
    >>> print cV
    [[ 0.  0.]
     [ 0.  0.]]


.. _idwt2:

Single level ``idwt2``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``idwt2`` function reconstructs data from given coefficients by performing
single level 2D Inverse Discrete Wavelet Transform.

::

  idwt2(coeffs, wavelet, mode='sym')

coeffs
  A tuple with approximation coefficients and three details coefficients 2D arrays
  like from `dwt2`_::

    (cA, (cH, cV, cD))

wavelet
  |wavelet_arg|

mode
  |mode| This is only important when DWT was performed in `periodization`_ mode.

.. class:: example

  Example:

  .. code-block:: Python
  
    >>> import pywt, numpy
    >>> data = numpy.array([[1,2], [3,4]], dtype=numpy.float64)
    >>> coeffs = pywt.dwt2(data, 'haar')
    >>> print pywt.idwt2(coeffs, 'haar')
    [[ 1.  2.]
     [ 3.  4.]]

   
.. _wavedec2:

2D multilevel decomposition using ``wavedec2``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Performs multilevel 2D Discrete Wavelet Transform decomposition 
and returns coefficients list ``[cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]``,
where ``n`` denotes the level of decomposition and cA, cH, cV and cD are 
approximation, horizontal detail, vertical detail and diagonal detail coefficients arrays.

::

  wavedec2(data, wavelet, mode='sym', level=None)

data
  |data|

wavelet
  |wavelet_arg|

level
  Decomposition level. This should not be greater than value 
  from the `dwt_max_level`_ function for smallest dimension.

mode
  |mode|

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt, numpy
    >>> coeffs = pywt.wavedec2(numpy.ones((8,8)), 'db1', level=2)
    >>> cA2, (cH2, cV2, cD2), (cH1, cV1, cD1) = coeffs
    >>> print cA2
    [[ 4.  4.]
     [ 4.  4.]]

.. _waverec2:

2D multilevel reconstruction using ``waverec2``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Performs multilevel reconstruction from given coefficient list.

::

  waverec2(coeffs, wavelet, mode='sym')

coeffs
  coefficients list must be in form like that from `wavedec2`_ decomposition::
  
  [cAn, (cHn, cVn, cDn), ..., (cH1, cV1, cD1)]

wavelet
  |wavelet_arg|
mode
  |mode|

.. class:: example

  Example:

  .. code-block:: Python

    >>> import pywt, numpy
    >>> coeffs = pywt.wavedec2(numpy.ones((4,4)), 'db1')
    >>> print "levels:", len(coeffs)-1
    levels: 2
    >>> print pywt.waverec2(coeffs, 'db1')
    [[ 1.  1.  1.  1.]
     [ 1.  1.  1.  1.]
     [ 1.  1.  1.  1.]
     [ 1.  1.  1.  1.]]    
    
Wavelet Packets
---------------

Wavelet Packet
~~~~~~~~~~~~~~

Tree structure simplifying operations on Wavelet Packet decomposition coefficients.
It consists of `Node`_ elements.

::

    WaveletPacket(data, wavelet, mode='sp1', maxlevel=None)

data
  |data|

wavelet
  |wavelet_arg|

mode
  |mode|

maxlevel 
  Maximum level of decomposition. If *maxlevel* is None it will be computed with
  `dwt_max_level`_ function.

wp = WaveletPacket(range(16), 'db1', maxlevel=3)

.. _get_node(path):

Access nodes - ``get_node(path)``
""""""""""""""""""""""""""""""""""""

Find node of given path in tree.

path 
  string composed of "a" and "d", of total length not greater than maxlevel.

If node does not exist yet, it will be created by decomposition of its
parent node.


Access node data - ``wp[path]``
""""""""""""""""""""""""""""""""""""""""""

Calls `get_node(path)`_ and returns data associated with node under given path.

Set node data - ``wp[path] = data``
"""""""""""""""""""""""""""""""""""""""""""

Calls `get_node(path)`_ and sets data of node under given path.

Delete node - ``del wp[path]``
""""""""""""""""""""""""""""""""""""

Marks node under given path in tree as ZeroTree root.

path 
  string composed of "a" and "d", of total length not greater than maxlevel.

If node does not exist yet, it will be created by decomposition of its
parent node.


Reconstruct signal - ``reconstruct(update=True)``
"""""""""""""""""""""""""""""""""""""""""""""""""

Returns data reconstruction using coefficients from subnodes.

If update is True, then node's data values will be replaced by
reconstruction values (also in subnodes).

Get nodes by level - ``get_level(level, order="natural")``
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Returns all nodes from specified level.

order 
  - "natural" - left to right in tree
  - "freq" - frequency ordered nodes

Get terminal nodes - ``get_nonzero(decompose=False)``
""""""""""""""""""""""""""""""""""""""""""""""""""""""

Returns non-zero terminal nodes.
        

Walk tree - ``walk(func, args=tuple())``
""""""""""""""""""""""""""""""""""""""""""

Walks tree and calls func on every node - ``func(node, *args)``.
If func returns True, descending to subnodes will proceed.

func 
  callable object
args
  additional func parms

Walk tree postorder - ``walk_depth(func, args=tuple())``
""""""""""""""""""""""""""""""""""""""""""""""""""""""""

Walks tree and calls func on every node starting from bottom most nodes.

func 
  callable object
args 
  additional func parms


Node
~~~~
WaveletPacket tree node.

Subnodes are called **'a'** and **'d'**, like approximation and detail coefficients
in Discrete Wavelet Transform

``path``
""""""""

Path under node is accessible in Wavelet Packet tree.

``data``
""""""""

Data associated with node.

``markZeroTree(flag=True, remove_sub=True)``
""""""""""""""""""""""""""""""""""""""""""""

Mark *node* as root of ZeroTree, which means that current node and all subnodes
don't take part in reconstruction (all coefficients equals 0).

flag
  True/False - mark/unmark node.
remove_sub
  If remove_sub and flag is True, subnodes of current node will be removed.

``isZeroTree``
""""""""""""""
Field - like markZeroTree.

``getChild(part, decompose=True)``
""""""""""""""""""""""""""""""""""""

Returns chosen subnode.

part
  subnode name ('a' or 'd')

decompose
  if True and subnodes don't exist, they will be created by 
  decomposition of current node (lazy evaluation).


Stationary Wavelet Transform
----------------------------

Multilevel ``swt``
~~~~~~~~~~~~~~~~~~

Performs multilevel Stationary Wavelet Transform.

::

  swt(data, wavelet, level)
    
data
  |data| Data length must be divisible by ``2^level``.

wavelet
  |wavelet_arg|
  
level
  Required transform level. See `swt_max_level`_.

Returned list of coefficient pairs is in form
``[(cA1, cD1), (cA2, cD2), ..., (cAn, cDn)]``, where n = level

.. _swt_max_level:

Maximum decomposition level - ``swt_max_level``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Returns maximum level of Stationary Wavelet Transform for data of given length.

::

  swt_max_level(input_len)


input_len
  input data length.  


Demo
----

* Multilevet wavelet decomposition and reconstruction - `wavedec.py`_
* Plot wavelet families - `plot_wavelets.py`_ - `db.png`_ `sym.png`_
* Plot wavelet and scaling functions - `waveinfo.py`_
* Plot coefficients from DWT and SWT for 3 different signals - `dwt_swt_show_coeffs.py`_
* Multilevel signal decomposition with DWT - `dwt_signal_decomposition.py`_
* Simple compression with Wavelet Packet - `wp_simple_compression.py`_
* Coefficient distribution for several Wavelet Packet Transform levels - `wp_visualize_coeffs_distribution.py`_ - `wp_distrib.png`_
* Signal frequency analysis using Wavelet Packet - `wp_scalogram.py`_ - `linchirp.png`_. See also output of some orca sound scalogram with WP - `orca.png`_.
* Benchmark `dwt`_ and `idwt`_ computation - `benchmark.py`_ - results achieved on Centrino 1,8GHz laptop - `benchmark_dwt.png`_, `benchmark_idwt.png`_
* Creating Wavelet objects from user supplied filter banks - `user_filter_banks.py`_
* Blending image textures in wavelet space - `image_blender.py`_

.. _wavedec.py: ./demo/wavedec.py
.. _plot_wavelets.py: ./demo/plot_wavelets.py
.. _dwt_swt_show_coeffs.py: ./demo/dwt_swt_show_coeffs.py
.. _dwt_signal_decomposition.py: ./demo/dwt_signal_decomposition.py
.. _wp_simple_compression.py: ./demo/wp_simple_compression.py
.. _wp_visualize_coeffs_distribution.py: ./demo/wp_visualize_coeffs_distribution.py
.. _wp_scalogram.py: ./demo/wp_scalogram.py
.. _benchmark.py: ./demo/benchmark.py
.. _user_filter_banks.py: ./demo/user_filter_banks.py
.. _`image_blender.py`: ./demo/image_blender.py
.. _`waveinfo.py`: ./demo/waveinfo.py

.. _db.png: ./img/db.png
.. _sym.png: ./img/sym.png
.. _linchirp.png: ./img/linchirp.png
.. _benchmark_dwt.png: ./img/benchmark_dwt.png
.. _benchmark_idwt.png: ./img/benchmark_idwt.png
.. _wp_distrib.png: ./img/wp_distrib.png
.. _orca.png: ./img/orca.png


.. |mode| replace:: Signal extension mode, see `MODES`_.

.. |data| replace::
    Input signal can be numeric array, python list or other iterable object.
    If data is not in *double* format it will be converted to that type
    before performing computation.

.. |wavelet_arg| replace:: Wavelet to use in transform. This can be name of wavelet from `wavelist()`_ or Wavelet_ object.

.. |pywt| replace:: `PyWavelets`

.. |Wavelet| replace:: ``Wavelet``