1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
# -*- coding: utf-8 -*-
# Copyright (c) 2006-2008 Filip Wasilewski <filip.wasilewski@gmail.com>
# See COPYING for license details.
# $Id: multidim.py 97 2008-03-06 23:33:40Z filipw $
"""
2D Discrete Wavelet Transform and Inverse Discrete Wavelet Transform.
"""
__all__ = ['dwt2', 'idwt2', 'swt2']
from itertools import izip
from _pywt import Wavelet, MODES
from _pywt import dwt, idwt, swt
from numerix import transpose, array, as_float_array, default_dtype
def dwt2(data, wavelet, mode='sym'):
"""
2D Discrete Wavelet Transform.
data - 2D array with input data
wavelet - wavelet to use (Wavelet object or name string)
mode - signal extension mode, see MODES
Returns approximaion and three details 2D coefficients arrays.
The result form four 2D coefficients arrays organized in tuples:
(approximation,
(horizontal details,
vertical details,
diagonal details)
)
which sometimes is also interpreted as layed out in one 2D array
of coefficients, where:
-----------------
| | |
| A(LL) | H(LH) |
| | |
(A, (H, V, D)) <---> -----------------
| | |
| V(HL) | D(HH) |
| | |
-----------------
"""
data = as_float_array(data)
if len(data.shape) != 2:
raise ValueError("Expected 2D data array")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
mode = MODES.from_object(mode)
# filter rows
H, L = [], []
append_L = L.append; append_H = H.append
for row in data:
cA, cD = dwt(row, wavelet, mode)
append_L(cA)
append_H(cD)
del data
# filter columns
H = transpose(H)
L = transpose(L)
LL, LH = [], []
append_LL = LL.append; append_LH = LH.append
for row in L:
cA, cD = dwt(array(row, default_dtype), wavelet, mode)
append_LL(cA)
append_LH(cD)
del L
HL, HH = [], []
append_HL = HL.append; append_HH = HH.append
for row in H:
cA, cD = dwt(array(row, default_dtype), wavelet, mode)
append_HL(cA)
append_HH(cD)
del H
# build result structure
# (approx., (horizontal, vertical, diagonal))
ret = (transpose(LL), (transpose(LH), transpose(HL), transpose(HH)))
return ret
def idwt2(coeffs, wavelet, mode='sym'):
"""
2D Inverse Discrete Wavelet Transform. Reconstruct data from coefficients
arrays.
coeffs - four 2D coefficients arrays arranged as follows:
(approximation,
(horizontal details,
vertical details,
diagonal details)
)
wavelet - wavelet to use (Wavelet object or name string)
mode - signal extension mode, see MODES
"""
if len(coeffs) != 2 or len(coeffs[1]) != 3:
raise ValueError("Invalid coeffs param")
# L -low-pass data, H - high-pass data
LL, (LH, HL, HH) = coeffs
(LL, LH, HL, HH) = (transpose(LL), transpose(LH), transpose(HL), transpose(HH))
for arr in (LL, LH, HL, HH):
if len(arr.shape) != 2:
raise TypeError("All input coefficients arrays must be 2D")
del arr
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
mode = MODES.from_object(mode)
# idwt columns
L = []
append_L = L.append
for rowL, rowH in izip(LL, LH):
append_L(idwt(rowL, rowH, wavelet, mode, 1))
del LL, LH
H = []
append_H = H.append
for rowL, rowH in izip(HL, HH):
append_H(idwt(rowL, rowH, wavelet, mode, 1))
del HL, HH
L = transpose(L)
H = transpose(H)
# idwt rows
data = []
append_data = data.append
for rowL, rowH in izip(L, H):
append_data(idwt(rowL, rowH, wavelet, mode, 1))
return array(data, default_dtype)
def swt2(data, wavelet, level, start_level=0):
"""
2D Stationary Wavelet Transform.
data - 2D array with input data
wavelet - wavelet to use (Wavelet object or name string)
level - how many decomposition steps to perform
start_level - the level at which the decomposition will start
Returns list of approximation and details coefficients:
[
(cA_n,
(cH_n, cV_n, cD_n)
),
(cA_n+1,
(cH_n+1, cV_n+1, cD_n+1)
),
...,
(cA_n+level,
(cH_n+level, cV_n+level, cD_n+level)
)
]
where cA is approximation, cH is horizontal details, cV is
vertical details, cD is diagonal details and n is start_level.
"""
data = as_float_array(data)
if len(data.shape) != 2:
raise ValueError("Expected 2D data array")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
ret = []
for i in range(start_level, start_level+level):
# filter rows
H, L = [], []
append_L = L.append; append_H = H.append
for row in data:
cA, cD = swt(row, wavelet, level=1, start_level=i)[0]
append_L(cA)
append_H(cD)
del data
# filter columns
H = transpose(H)
L = transpose(L)
LL, LH = [], []
append_LL = LL.append; append_LH = LH.append
for row in L:
cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
append_LL(cA)
append_LH(cD)
del L
HL, HH = [], []
append_HL = HL.append; append_HH = HH.append
for row in H:
cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
append_HL(cA)
append_HH(cD)
del H
# build result structure
# (approx., (horizontal, vertical, diagonal))
approx = transpose(LL)
ret.append((approx, (transpose(LH), transpose(HL), transpose(HH))))
data = approx # for next iteration
return ret
|