File: multidim.py

package info (click to toggle)
pywavelets 0.1.7~svn97-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 2,408 kB
  • ctags: 1,492
  • sloc: ansic: 3,375; python: 1,910; makefile: 44
file content (230 lines) | stat: -rw-r--r-- 6,416 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-

# Copyright (c) 2006-2008 Filip Wasilewski <filip.wasilewski@gmail.com>
# See COPYING for license details.

# $Id: multidim.py 97 2008-03-06 23:33:40Z filipw $

"""
2D Discrete Wavelet Transform and Inverse Discrete Wavelet Transform.
"""

__all__ = ['dwt2', 'idwt2', 'swt2']

from itertools import izip

from _pywt import Wavelet, MODES
from _pywt import dwt, idwt, swt
from numerix import transpose, array, as_float_array, default_dtype


def dwt2(data, wavelet, mode='sym'):
    """
    2D Discrete Wavelet Transform.
    
    data    - 2D array with input data 
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
        
    Returns approximaion and three details 2D coefficients arrays.

    The result form four 2D coefficients arrays organized in tuples:
    
        (approximation,
                (horizontal details,
                vertical details,
                diagonal details)
        )
    
    which sometimes is also interpreted as layed out in one 2D array
    of coefficients, where:

                                -----------------
                                |       |       |
                                | A(LL) | H(LH) |
                                |       |       |
        (A, (H, V, D))  <--->   -----------------
                                |       |       |
                                | V(HL) | D(HH) |
                                |       |       |
                                -----------------
    """
    
    data = as_float_array(data)
    if len(data.shape) != 2:
        raise ValueError("Expected 2D data array")
    
    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    mode = MODES.from_object(mode)
    
    # filter rows
    H, L = [], []
    append_L = L.append; append_H = H.append
    for row in data:
        cA, cD = dwt(row, wavelet, mode)
        append_L(cA)
        append_H(cD)
    del data
    
    # filter columns
    H = transpose(H)
    L = transpose(L)
 
    LL, LH = [], []
    append_LL = LL.append; append_LH = LH.append
    for row in L:
        cA, cD = dwt(array(row, default_dtype), wavelet, mode)
        append_LL(cA)
        append_LH(cD)
    del L
    
    HL, HH = [], []
    append_HL = HL.append; append_HH = HH.append
    for row in H:
        cA, cD = dwt(array(row, default_dtype), wavelet, mode)
        append_HL(cA)
        append_HH(cD)
    del H
    
    # build result structure
    #     (approx.,        (horizontal,    vertical,       diagonal))
    ret = (transpose(LL), (transpose(LH), transpose(HL), transpose(HH)))  
        
    return ret

def idwt2(coeffs, wavelet, mode='sym'):
    """
    2D Inverse Discrete Wavelet Transform. Reconstruct data from coefficients
    arrays.
    
    coeffs  - four 2D coefficients arrays arranged as follows:
    
        (approximation,
                (horizontal details,
                vertical details,
                diagonal details)
        )

    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    """
    
    if len(coeffs) != 2 or len(coeffs[1]) != 3:
        raise ValueError("Invalid coeffs param")
    
    # L -low-pass data, H - high-pass data
    LL, (LH, HL, HH) = coeffs

    (LL, LH, HL, HH) = (transpose(LL), transpose(LH), transpose(HL), transpose(HH))
    for arr in (LL, LH, HL, HH):
        if len(arr.shape) != 2:
            raise TypeError("All input coefficients arrays must be 2D")
    del arr
    
    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    mode = MODES.from_object(mode)
    
    # idwt columns
    L = []
    append_L = L.append
    for rowL, rowH in izip(LL, LH):
        append_L(idwt(rowL, rowH, wavelet, mode, 1))
    del LL, LH

    H = []
    append_H = H.append
    for rowL, rowH in izip(HL, HH):
        append_H(idwt(rowL, rowH, wavelet, mode, 1))
    del HL, HH

    L = transpose(L)
    H = transpose(H)

    # idwt rows
    data = []
    append_data = data.append
    for rowL, rowH in izip(L, H):
        append_data(idwt(rowL, rowH, wavelet, mode, 1))

    return array(data, default_dtype)


def swt2(data, wavelet, level, start_level=0):
    """
    2D Stationary Wavelet Transform.
    
    data    - 2D array with input data 
    wavelet - wavelet to use (Wavelet object or name string)
    level   - how many decomposition steps to perform
    start_level - the level at which the decomposition will start
    
    Returns list of approximation and details coefficients:
    
        [
            (cA_n,
                (cH_n, cV_n, cD_n)
            ),
            (cA_n+1,
                (cH_n+1, cV_n+1, cD_n+1)
            ),
            ...,
            (cA_n+level,
                (cH_n+level, cV_n+level, cD_n+level)
            )
        ]

    where cA is approximation, cH is horizontal details, cV is
    vertical details, cD is diagonal details and n is start_level.
    """
    
    data = as_float_array(data)
    if len(data.shape) != 2:
        raise ValueError("Expected 2D data array")
    
    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    ret = []
    for i in range(start_level, start_level+level):
        # filter rows
        H, L = [], []
        append_L = L.append; append_H = H.append
        for row in data:
            cA, cD = swt(row, wavelet, level=1, start_level=i)[0]
            append_L(cA)
            append_H(cD)
        del data
    
        # filter columns
        H = transpose(H)
        L = transpose(L)
 
        LL, LH = [], []
        append_LL = LL.append; append_LH = LH.append
        for row in L:
            cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
            append_LL(cA)
            append_LH(cD)
        del L
    
        HL, HH = [], []
        append_HL = HL.append; append_HH = HH.append
        for row in H:
            cA, cD = swt(array(row, default_dtype), wavelet, level=1, start_level=i)[0]
            append_HL(cA)
            append_HH(cD)
        del H
    
        # build result structure
        #     (approx.,        (horizontal,    vertical,       diagonal))
        approx = transpose(LL)
        ret.append((approx, (transpose(LH), transpose(HL), transpose(HH))))
        
        data = approx # for next iteration
        
    return ret