1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
.. _ref-wavelets:
.. currentmodule:: pywt
.. include:: ../substitutions.rst
========
Wavelets
========
Wavelet ``families()``
----------------------
.. function:: families()
Returns a list of available built-in wavelet families. Currently the built-in
families are:
* Haar (``haar``)
* Daubechies (``db``)
* Symlets (``sym``)
* Coiflets (``coif``)
* Biorthogonal (``bior``)
* Reverse biorthogonal (``rbio``)
* `"Discrete"` FIR approximation of Meyer wavelet (``dmey``)
**Example:**
.. sourcecode:: python
>>> import pywt
>>> print pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']
Built-in wavelets - ``wavelist()``
----------------------------------
.. function:: wavelist([family])
The :func:`wavelist` function returns a list of names of the built-in
wavelets.
If the *family* name is ``None`` then names of all the built-in wavelets
are returned. Otherwise the function returns names of wavelets that belong
to the given family.
**Example:**
.. sourcecode:: python
>>> import pywt
>>> print pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5']
Custom user wavelets are also supported through the :class:`Wavelet` object
constructor as described below.
``Wavelet`` object
------------------
.. class:: Wavelet(name[, filter_bank=None])
Describes properties of a wavelet identified by the specified wavelet *name*.
In order to use a built-in wavelet the *name* parameter must be a valid
wavelet name from the :func:`pywt.wavelist` list.
Custom Wavelet objects can be created by passing a user-defined filters set
with the *filter_bank* parameter.
:param name: Wavelet name
:param filter_bank: Use a user supplied filter bank instead of a built-in :class:`Wavelet`.
The filter bank object can be a list of four filters coefficients or an object
with :attr:`~Wavelet.filter_bank` attribute, which returns a list of such
filters in the following order::
[dec_lo, dec_hi, rec_lo, rec_hi]
.. note::
The :meth:`~Wavelet.get_filters_coeffs` method is kept for compatibility
with the previous versions of |pywt|, but may be removed in a future version
of the package.
Wavelet objects can also be used as a base filter banks. See section on
:ref:`using custom wavelets <custom-wavelets>` for more information.
**Example:**
.. sourcecode:: python
>>> import pywt
>>> wavelet = pywt.Wavelet('db1')
.. attribute:: name
Wavelet name.
.. attribute:: short_name
Short wavelet name.
.. attribute:: dec_lo
Decomposition filter values.
.. attribute:: dec_hi
Decomposition filter values.
.. attribute:: rec_lo
Reconstruction filter values.
.. attribute:: rec_hi
Reconstruction filter values.
.. attribute:: dec_len
Decomposition filter length.
.. attribute:: rec_len
Reconstruction filter length.
.. attribute:: filter_bank
Returns filters list for the current wavelet in the following order::
[dec_lo, dec_hi, rec_lo, rec_hi]
The :meth:`~Wavelet.get_filters_coeffs` method is deprecated.
.. attribute:: inverse_filter_bank
Returns list of reverse wavelet filters coefficients. The mapping from the
`filter_coeffs` list is as follows::
[rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-1]]
The :meth:`~Wavelet.get_reverse_filters_coeffs` method is deprecated.
.. attribute:: short_family_name
Wavelet short family name
.. attribute:: family_name
Wavelet family name
.. attribute:: orthogonal
Set if wavelet is orthogonal
.. attribute:: biorthogonal
Set if wavelet is biorthogonal
.. attribute:: symmetry
``asymmetric``, ``near symmetric``, ``symmetric``
.. attribute:: vanishing_moments_psi
Number of vanishing moments for the wavelet function
.. attribute:: vanishing_moments_phi
Number of vanishing moments for the scaling function
**Example:**
.. sourcecode:: python
>>> def format_array(arr):
... return "[%s]" % ", ".join(["%.14f" % x for x in arr])
>>> import pywt
>>> wavelet = pywt.Wavelet('db1')
>>> print wavelet
Wavelet db1
Family name: Daubechies
Short name: db
Filters length: 2
Orthogonal: True
Biorthogonal: True
Symmetry: asymmetric
>>> print format_array(wavelet.dec_lo), format_array(wavelet.dec_hi)
[0.70710678118655, 0.70710678118655] [-0.70710678118655, 0.70710678118655]
>>> print format_array(wavelet.rec_lo), format_array(wavelet.rec_hi)
[0.70710678118655, 0.70710678118655] [0.70710678118655, -0.70710678118655]
Approximating wavelet and scaling functions - ``Wavelet.wavefun()``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. method:: Wavelet.wavefun(level)
.. versionchanged:: 0.2
The time (space) localisation of approximation function points was
added.
The :meth:`~Wavelet.wavefun` method can be used to calculate approximations of
scaling function (*phi*) and wavelet function (*psi*) at the given level of
refinement.
For :attr:`orthogonal <Wavelet.orthogonal>` wavelets returns approximations of
scaling function and wavelet function with corresponding x-grid coordinates::
[phi, psi, x] = wavelet.wavefun(level)
**Example:**
.. sourcecode:: python
>>> import pywt
>>> wavelet = pywt.Wavelet('db2')
>>> phi, psi, x = wavelet.wavefun(level=5)
For other (:attr:`biorthogonal <Wavelet.biorthogonal>` but not
:attr:`orthogonal <Wavelet.orthogonal>`) wavelets returns approximations of
scaling and wavelet function both for decomposition and reconstruction and
corresponding x-grid coordinates::
[phi_d, psi_d, phi_r, psi_r, x] = wavelet.wavefun(level)
**Example:**
.. sourcecode:: python
>>> import pywt
>>> wavelet = pywt.Wavelet('bior3.5')
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)
.. See also plots of Daubechies and Symlets wavelet families generated using
the :meth:`~Wavelet.wavefun` function:
- `db.png`_
- `sym.png`_
.. seealso:: You can find live examples of :meth:`~Wavelet.wavefun` usage and
images of all the built-in wavelets on the
`Wavelet Properties Browser <http://wavelets.pybytes.com>`_ page.
.. _using-custom-wavelets:
.. _custom-wavelets:
Using custom wavelets
---------------------
|pywt| comes with a :func:`long list <pywt.wavelist>` of the most popular
wavelets built-in and ready to use. If you need to use a specific wavelet which
is not included in the list it is very easy to do so. Just pass a list of four
filters or an object with a :attr:`~Wavelet.filter_bank` attribute as a
*filter_bank* argument to the :class:`Wavelet` constructor.
.. compound::
The filters list, either in a form of a simple Python list or returned via
the :attr:`~Wavelet.filter_bank` attribute, must be in the following order:
* lowpass decomposition filter
* highpass decomposition filter
* lowpass reconstruction filter
* highpass reconstruction filter
just as for the :attr:`~Wavelet.filter_bank` attribute of the
:class:`Wavelet` class.
The Wavelet object created in this way is a standard :class:`Wavelet` instance.
The following example illustrates the way of creating custom Wavelet objects
from plain Python lists of filter coefficients and a *filter bank-like* objects.
**Example:**
.. sourcecode:: python
>>> import pywt, math
>>> c = math.sqrt(2)/2
>>> dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
>>> filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
>>> myWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)
>>>
>>> class HaarFilterBank(object):
... @property
... def filter_bank(self):
... c = math.sqrt(2)/2
... dec_lo, dec_hi, rec_lo, rec_hi = [c, c], [-c, c], [c, c], [c, -c]
... return [dec_lo, dec_hi, rec_lo, rec_hi]
>>> filter_bank = HaarFilterBank()
>>> myOtherWavelet = pywt.Wavelet(name="myHaarWavelet", filter_bank=filter_bank)
|