1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
import numpy as np
import pywt
import matplotlib.pyplot as plt
wav = pywt.ContinuousWavelet('cmor1.5-1.0')
# print the range over which the wavelet will be evaluated
print("Continuous wavelet will be evaluated over the range [{}, {}]".format(
wav.lower_bound, wav.upper_bound))
width = wav.upper_bound - wav.lower_bound
scales = [1, 2, 3, 4, 10, 15]
max_len = int(np.max(scales)*width + 1)
t = np.arange(max_len)
fig, axes = plt.subplots(len(scales), 2, figsize=(12, 6))
for n, scale in enumerate(scales):
# The following code is adapted from the internals of cwt
int_psi, x = pywt.integrate_wavelet(wav, precision=10)
step = x[1] - x[0]
j = np.floor(
np.arange(scale * width + 1) / (scale * step))
if np.max(j) >= np.size(int_psi):
j = np.delete(j, np.where((j >= np.size(int_psi)))[0])
j = j.astype(np.int_)
# normalize int_psi for easier plotting
int_psi /= np.abs(int_psi).max()
# discrete samples of the integrated wavelet
filt = int_psi[j][::-1]
# The CWT consists of convolution of filt with the signal at this scale
# Here we plot this discrete convolution kernel at each scale.
nt = len(filt)
t = np.linspace(-nt//2, nt//2, nt)
axes[n, 0].plot(t, filt.real, t, filt.imag)
axes[n, 0].set_xlim([-max_len//2, max_len//2])
axes[n, 0].set_ylim([-1, 1])
axes[n, 0].text(50, 0.35, 'scale = {}'.format(scale))
f = np.linspace(-np.pi, np.pi, max_len)
filt_fft = np.fft.fftshift(np.fft.fft(filt, n=max_len))
filt_fft /= np.abs(filt_fft).max()
axes[n, 1].plot(f, np.abs(filt_fft)**2)
axes[n, 1].set_xlim([-np.pi, np.pi])
axes[n, 1].set_ylim([0, 1])
axes[n, 1].set_xticks([-np.pi, 0, np.pi])
axes[n, 1].set_xticklabels([r'$-\pi$', '0', r'$\pi$'])
axes[n, 1].grid(True, axis='x')
axes[n, 1].text(np.pi/2, 0.5, 'scale = {}'.format(scale))
axes[n, 0].set_xlabel('time (samples)')
axes[n, 1].set_xlabel('frequency (radians)')
axes[0, 0].legend(['real', 'imaginary'], loc='upper left')
axes[0, 1].legend(['Power'], loc='upper left')
axes[0, 0].set_title('filter')
axes[0, 1].set_title(r'|FFT(filter)|$^2$')
|