File: dwt-idwt.rst

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (151 lines) | stat: -rw-r--r-- 5,496 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
.. _reg-dwt-idwt:

.. currentmodule:: pywt

DWT and IDWT
============

Discrete Wavelet Transform
--------------------------

Let's do a :func:`Discrete Wavelet Transform <dwt>` of a sample data ``x``
using the ``db2`` wavelet. It's simple..

    >>> import pywt
    >>> x = [3, 7, 1, 1, -2, 5, 4, 6]
    >>> cA, cD = pywt.dwt(x, 'db2')

And the approximation and details coefficients are in ``cA`` and ``cD``
respectively:

    >>> print(cA)
    [ 5.65685425  7.39923721  0.22414387  3.33677403  7.77817459]
    >>> print(cD)
    [-2.44948974 -1.60368225 -4.44140056 -0.41361256  1.22474487]

Inverse Discrete Wavelet Transform
----------------------------------

Now let's do an opposite operation
- :func:`Inverse Discrete Wavelet Transform <idwt>`:

    >>> print(pywt.idwt(cA, cD, 'db2'))
    [ 3.  7.  1.  1. -2.  5.  4.  6.]

VoilĂ ! That's it!

More Examples
-------------

Now let's experiment with the :func:`dwt` some more. For example let's pass a
:class:`Wavelet` object instead of the wavelet name and specify signal
extension mode (the default is :ref:`symmetric <Modes.symmetric>`) for the
border effect handling:

    >>> w = pywt.Wavelet('sym3')
    >>> cA, cD = pywt.dwt(x, wavelet=w, mode='constant')
    >>> print(cA)
    [ 4.38354585  3.80302657  7.31813271 -0.58565539  4.09727044  7.81994027]
    >>> print(cD)
    [-1.33068221 -2.78795192 -3.16825651 -0.67715519 -0.09722957 -0.07045258]

Note that the output coefficients arrays length depends not only on the input
data length but also on the :class:Wavelet type (particularly on its
:attr:`filters length <~Wavelet.dec_len>` that are used in the transformation).

To find out what will be the output data size use the :func:`dwt_coeff_len`
function:

    >>> # int() is for normalizing Python integers and long integers for documentation tests
    >>> int(pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode='symmetric'))
    6
    >>> int(pywt.dwt_coeff_len(len(x), w, 'symmetric'))
    6
    >>> len(cA)
    6

Looks fine. (And if you expected that the output length would be a half of the
input data length, well, that's the trade-off that allows for the perfect
reconstruction...).

The third argument of the :func:`dwt_coeff_len` is the already mentioned signal
extension mode (please refer to the PyWavelets' documentation for the
:ref:`modes <modes>` description). Currently there are six
:ref:`extension modes <Modes>` available:

    >>> pywt.Modes.modes
    ['zero', 'constant', 'symmetric', 'periodic', 'smooth', 'periodization', 'reflect', 'antisymmetric', 'antireflect']

As you see in the above example, the :ref:`periodization <Modes.periodization>`
(periodization) mode is slightly different from the others. It's aim when
doing the :func:`DWT <dwt>` transform is to output coefficients arrays that
are half of the length of the input data.

Knowing that, you should never mix the periodization mode with other modes when
doing :func:`DWT <dwt>` and :func:`IDWT <idwt>`. Otherwise, it will produce
**invalid results**:

    >>> x
    [3, 7, 1, 1, -2, 5, 4, 6]
    >>> cA, cD = pywt.dwt(x, wavelet=w, mode='periodization')
    >>> print(pywt.idwt(cA, cD, 'sym3', 'symmetric')) # invalid mode
    [ 1.  1. -2.  5.]
    >>> print(pywt.idwt(cA, cD, 'sym3', 'periodization'))
    [ 3.  7.  1.  1. -2.  5.  4.  6.]


Tips & tricks
-------------

Passing ``None`` instead of coefficients data to :func:`idwt`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Now some tips & tricks. Passing ``None`` as one of the coefficient arrays
parameters is similar to passing a *zero-filled* array. The results are simply
the same:

    >>> print(pywt.idwt([1,2,0,1], None, 'db2', 'symmetric'))
    [ 1.19006969  1.54362308  0.44828774 -0.25881905  0.48296291  0.8365163 ]

    >>> print(pywt.idwt([1, 2, 0, 1], [0, 0, 0, 0], 'db2', 'symmetric'))
    [ 1.19006969  1.54362308  0.44828774 -0.25881905  0.48296291  0.8365163 ]

    >>> print(pywt.idwt(None, [1, 2, 0, 1], 'db2', 'symmetric'))
    [ 0.57769726 -0.93125065  1.67303261 -0.96592583 -0.12940952 -0.22414387]

    >>> print(pywt.idwt([0, 0, 0, 0], [1, 2, 0, 1], 'db2', 'symmetric'))
    [ 0.57769726 -0.93125065  1.67303261 -0.96592583 -0.12940952 -0.22414387]

Remember that only one argument at a time can be ``None``:

    >>> print(pywt.idwt(None, None, 'db2', 'symmetric'))
    Traceback (most recent call last):
    ...
    ValueError: At least one coefficient parameter must be specified.


Coefficients data size in :attr:`idwt`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

When doing the :func:`IDWT <idwt>` transform, usually the coefficient arrays
must have the same size.

    >>> print(pywt.idwt([1, 2, 3, 4, 5], [1, 2, 3, 4], 'db2', 'symmetric'))
    Traceback (most recent call last):
    ...
    ValueError: Coefficients arrays must have the same size.


Not every coefficient array can be used in :func:`IDWT <idwt>`. In the
following example the :func:`idwt` will fail because the input arrays are
invalid - they couldn't be created as a result of :func:`DWT <dwt>`, because
the minimal output length for dwt using ``db4`` wavelet and the :ref:`symmetric
<Modes.symmetric>` mode is ``4``, not ``3``:

    >>> pywt.idwt([1,2,4], [4,1,3], 'db4', 'symmetric')
    Traceback (most recent call last):
    ...
    ValueError: Invalid coefficient arrays length for specified wavelet. Wavelet and mode must be the same as used for decomposition.

    >>> int(pywt.dwt_coeff_len(1, pywt.Wavelet('db4').dec_len, 'symmetric'))
    4