1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
.. _reg-wp:
.. currentmodule:: pywt
>>> from __future__ import print_function
Wavelet Packets
===============
Import pywt
-----------
>>> import pywt
>>> def format_array(a):
... """Consistent array representation across different systems"""
... import numpy
... a = numpy.where(numpy.abs(a) < 1e-5, 0, a)
... return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)
Create Wavelet Packet structure
-------------------------------
Ok, let's create a sample :class:`WaveletPacket`:
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
The input ``data`` and decomposition coefficients are stored in the
:attr:`WaveletPacket.data` attribute:
>>> print(wp.data)
[1, 2, 3, 4, 5, 6, 7, 8]
:class:`Nodes <Node>` are identified by :attr:`paths <~Node.path>`. For the root
node the path is ``''`` and the decomposition level is ``0``.
>>> print(repr(wp.path))
''
>>> print(wp.level)
0
The ``maxlevel``, if not given as param in the constructor, is automatically
computed:
>>> print(wp['ad'].maxlevel)
3
Traversing WP tree:
-------------------
Accessing subnodes:
~~~~~~~~~~~~~~~~~~~
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
First check what is the maximum level of decomposition:
>>> print(wp.maxlevel)
3
and try accessing subnodes of the WP tree:
* 1st level:
>>> print(wp['a'].data)
[ 2.12132034 4.94974747 7.77817459 10.60660172]
>>> print(wp['a'].path)
a
* 2nd level:
>>> print(wp['aa'].data)
[ 5. 13.]
>>> print(wp['aa'].path)
aa
* 3rd level:
>>> print(wp['aaa'].data)
[ 12.72792206]
>>> print(wp['aaa'].path)
aaa
Ups, we have reached the maximum level of decomposition and got an
:exc:`IndexError`:
>>> print(wp['aaaa'].data)
Traceback (most recent call last):
...
IndexError: Path length is out of range.
Now try some invalid path:
>>> print(wp['ac'])
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'd'], not 'c'.
which just yielded a :exc:`ValueError`.
Accessing Node's attributes:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:class:`WaveletPacket` object is a tree data structure, which evaluates to a set
of :class:`Node` objects. :class:`WaveletPacket` is just a special subclass
of the :class:`Node` class (which in turn inherits from the :class:`BaseNode`).
Tree nodes can be accessed using the ``obj[x]`` (:meth:`Node.__getitem__`)
operator.
Each tree node has a set of attributes: :attr:`~Node.data`, :attr:`~Node.path`,
:attr:`~Node.node_name`, :attr:`~Node.parent`, :attr:`~Node.level`,
:attr:`~Node.maxlevel` and :attr:`~Node.mode`.
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
>>> print(wp['ad'].data)
[-2. -2.]
>>> print(wp['ad'].path)
ad
>>> print(wp['ad'].node_name)
d
>>> print(wp['ad'].parent.path)
a
>>> print(wp['ad'].level)
2
>>> print(wp['ad'].maxlevel)
3
>>> print(wp['ad'].mode)
symmetric
Collecting nodes
~~~~~~~~~~~~~~~~
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
We can get all nodes on the particular level either in ``natural`` order:
>>> print([node.path for node in wp.get_level(3, 'natural')])
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']
or sorted based on the band frequency (``freq``):
>>> print([node.path for node in wp.get_level(3, 'freq')])
['aaa', 'aad', 'add', 'ada', 'dda', 'ddd', 'dad', 'daa']
Note that :meth:`WaveletPacket.get_level` also performs automatic decomposition
until it reaches the specified ``level``.
Reconstructing data from Wavelet Packets:
-----------------------------------------
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
Now create a new :class:`Wavelet Packet <WaveletPacket>` and set its nodes with
some data.
>>> new_wp = pywt.WaveletPacket(data=None, wavelet='db1', mode='symmetric')
>>> new_wp['aa'] = wp['aa'].data
>>> new_wp['ad'] = [-2., -2.]
For convenience, :attr:`Node.data` gets automatically extracted from the
:class:`Node` object:
>>> new_wp['d'] = wp['d']
And reconstruct the data from the ``aa``, ``ad`` and ``d`` packets.
>>> print(new_wp.reconstruct(update=False))
[ 1. 2. 3. 4. 5. 6. 7. 8.]
If the ``update`` param in the reconstruct method is set to ``False``, the
node's :attr:`~Node.data` will not be updated.
>>> print(new_wp.data)
None
Otherwise, the :attr:`~Node.data` attribute will be set to the reconstructed
value.
>>> print(new_wp.reconstruct(update=True))
[ 1. 2. 3. 4. 5. 6. 7. 8.]
>>> print(new_wp.data)
[ 1. 2. 3. 4. 5. 6. 7. 8.]
>>> print([n.path for n in new_wp.get_leaf_nodes(False)])
['aa', 'ad', 'd']
>>> print([n.path for n in new_wp.get_leaf_nodes(True)])
['aaa', 'aad', 'ada', 'add', 'daa', 'dad', 'dda', 'ddd']
Removing nodes from Wavelet Packet tree:
----------------------------------------
Let's create a sample data:
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
First, start with a tree decomposition at level 2. Leaf nodes in the tree are:
>>> dummy = wp.get_level(2)
>>> for n in wp.get_leaf_nodes(False):
... print(n.path, format_array(n.data))
aa [ 5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [ 0. 0.]
>>> node = wp['ad']
>>> print(node)
ad: [-2. -2.]
To remove a node from the WP tree, use Python's ``del obj[x]``
(:class:`Node.__delitem__`):
>>> del wp['ad']
The leaf nodes that left in the tree are:
>>> for n in wp.get_leaf_nodes():
... print(n.path, format_array(n.data))
aa [ 5. 13.]
da [-1. -1.]
dd [ 0. 0.]
And the reconstruction is:
>>> print(wp.reconstruct())
[ 2. 3. 2. 3. 6. 7. 6. 7.]
Now restore the deleted node value.
>>> wp['ad'].data = node.data
Printing leaf nodes and tree reconstruction confirms the original state of the
tree:
>>> for n in wp.get_leaf_nodes(False):
... print(n.path, format_array(n.data))
aa [ 5. 13.]
ad [-2. -2.]
da [-1. -1.]
dd [ 0. 0.]
>>> print(wp.reconstruct())
[ 1. 2. 3. 4. 5. 6. 7. 8.]
Lazy evaluation:
----------------
.. note:: This section is for demonstration of pywt internals purposes
only. Do not rely on the attribute access to nodes as presented in
this example.
>>> x = [1, 2, 3, 4, 5, 6, 7, 8]
>>> wp = pywt.WaveletPacket(data=x, wavelet='db1', mode='symmetric')
1) At first the wp's attribute ``a`` is None
>>> print(wp.a)
None
**Remember that you should not rely on the attribute access.**
2) At first attempt to access the node it is computed via decomposition
of its parent node (the wp object itself).
>>> print(wp['a'])
a: [ 2.12132034 4.94974747 7.77817459 10.60660172]
3) Now the ``wp.a`` is set to the newly created node:
>>> print(wp.a)
a: [ 2.12132034 4.94974747 7.77817459 10.60660172]
And so is ``wp.d``:
>>> print(wp.d)
d: [-0.70710678 -0.70710678 -0.70710678 -0.70710678]
|