1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
.. _reg-wp2d:
.. currentmodule:: pywt
2D Wavelet Packets
==================
Import pywt
-----------
>>> from __future__ import print_function
>>> import pywt
>>> import numpy
Create 2D Wavelet Packet structure
----------------------------------
Start with preparing test data:
>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, 'd')
>>> print(x)
[[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]]
Now create a :class:`2D Wavelet Packet <WaveletPacket2D>` object:
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='symmetric')
The input ``data`` and decomposition coefficients are stored in the
:attr:`WaveletPacket2D.data` attribute:
>>> print(wp.data)
[[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]]
:class:`Nodes <Node2D>` are identified by paths. For the root node the path is
``''`` and the decomposition level is ``0``.
>>> print(repr(wp.path))
''
>>> print(wp.level)
0
The :attr:`WaveletPacket2D.maxlevel`, if not given in the constructor, is
automatically computed based on the data size:
>>> print(wp.maxlevel)
3
Traversing WP tree:
-------------------
Wavelet Packet :class:`nodes <Node2D>` are arranged in a tree. Each node in a WP
tree is uniquely identified and addressed by a :attr:`~Node2D.path` string.
In the 1D :class:`WaveletPacket` case nodes were accessed using ``'a'``
(approximation) and ``'d'`` (details) path names (each node has two 1D
children).
Because now we deal with a bit more complex structure (each node has four
children), we have four basic path names based on the dwt 2D output convention
to address the WP2D structure:
* ``a`` - LL, low-low coefficients
* ``h`` - LH, low-high coefficients
* ``v`` - HL, high-low coefficients
* ``d`` - HH, high-high coefficients
In other words, subnode naming corresponds to the :func:`dwt2` function output
naming convention (as wavelet packet transform is based on the dwt2 transform)::
-------------------
| | |
| cA(LL) | cH(LH) |
| | |
(cA, (cH, cV, cD)) <---> -------------------
| | |
| cV(HL) | cD(HH) |
| | |
-------------------
(fig.1: DWT 2D output and interpretation)
Knowing what the nodes names are, we can now access them using the indexing
operator ``obj[x]`` (:meth:`WaveletPacket2D.__getitem__`):
>>> print(wp['a'].data)
[[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]]
>>> print(wp['h'].data)
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
>>> print(wp['v'].data)
[[-1. -1. -1. -1.]
[-1. -1. -1. -1.]
[-1. -1. -1. -1.]
[-1. -1. -1. -1.]]
>>> print(wp['d'].data)
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
Similarly, a subnode of a subnode can be accessed by:
>>> print(wp['aa'].data)
[[ 10. 26.]
[ 10. 26.]]
Indexing base :class:`WaveletPacket2D` (as well as 1D :class:`WaveletPacket`)
using compound path is just the same as indexing WP subnode:
>>> node = wp['a']
>>> print(node['a'].data)
[[ 10. 26.]
[ 10. 26.]]
>>> print(wp['a']['a'].data is wp['aa'].data)
True
Following down the decomposition path:
>>> print(wp['aaa'].data)
[[ 36.]]
>>> print(wp['aaaa'].data)
Traceback (most recent call last):
...
IndexError: Path length is out of range.
Ups, we have reached the maximum level of decomposition for the ``'aaaa'`` path,
which btw. was:
>>> print(wp.maxlevel)
3
Now try some invalid path:
>>> print(wp['f'])
Traceback (most recent call last):
...
ValueError: Subnode name must be in ['a', 'h', 'v', 'd'], not 'f'.
Accessing Node2D's attributes:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:class:`WaveletPacket2D` is a tree data structure, which evaluates to a set
of :class:`Node2D` objects. :class:`WaveletPacket2D` is just a special subclass
of the :class:`Node2D` class (which in turn inherits from a :class:`BaseNode`,
just like with :class:`Node` and :class:`WaveletPacket` for the 1D case.).
>>> print(wp['av'].data)
[[-4. -4.]
[-4. -4.]]
>>> print(wp['av'].path)
av
>>> print(wp['av'].node_name)
v
>>> print(wp['av'].parent.path)
a
>>> print(wp['av'].parent.data)
[[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]]
>>> print(wp['av'].level)
2
>>> print(wp['av'].maxlevel)
3
>>> print(wp['av'].mode)
symmetric
Collecting nodes
~~~~~~~~~~~~~~~~
We can get all nodes on the particular level using the
:meth:`WaveletPacket2D.get_level` method:
* 0 level - the root `wp` node:
>>> len(wp.get_level(0))
1
>>> print([node.path for node in wp.get_level(0)])
['']
* 1st level of decomposition:
>>> len(wp.get_level(1))
4
>>> print([node.path for node in wp.get_level(1)])
['a', 'h', 'v', 'd']
* 2nd level of decomposition:
>>> len(wp.get_level(2))
16
>>> paths = [node.path for node in wp.get_level(2)]
>>> for i, path in enumerate(paths):
... if (i+1) % 4 == 0:
... print(path)
... else:
... print(path, end=' ')
aa ah av ad
ha hh hv hd
va vh vv vd
da dh dv dd
* 3rd level of decomposition:
>>> print(len(wp.get_level(3)))
64
>>> paths = [node.path for node in wp.get_level(3)]
>>> for i, path in enumerate(paths):
... if (i+1) % 8 == 0:
... print(path)
... else:
... print(path, end=' ')
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd
Note that :meth:`WaveletPacket2D.get_level` performs automatic decomposition
until it reaches the given level.
Reconstructing data from Wavelet Packets:
-----------------------------------------
Let's create a new empty 2D Wavelet Packet structure and set its nodes
values with known data from the previous examples:
>>> new_wp = pywt.WaveletPacket2D(data=None, wavelet='db1', mode='symmetric')
>>> new_wp['vh'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vv'] = wp['vh'].data # [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['vd'] = [[0.0, 0.0], [0.0, 0.0]]
>>> new_wp['a'] = [[3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0],
... [3.0, 7.0, 11.0, 15.0], [3.0, 7.0, 11.0, 15.0]]
>>> new_wp['d'] = [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0],
... [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]
For convenience, :attr:`Node2D.data` gets automatically extracted from the
base :class:`Node2D` object:
>>> new_wp['h'] = wp['h'] # all zeros
Note: just remember to not assign to the node.data parameter directly (todo).
And reconstruct the data from the ``a``, ``d``, ``vh``, ``vv``, ``vd`` and ``h``
packets (Note that ``va`` node was not set and the WP tree is "not complete"
- the ``va`` branch will be treated as *zero-array*):
>>> print(new_wp.reconstruct(update=False))
[[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]
Now set the ``va`` node with the known values and do the reconstruction again:
>>> new_wp['va'] = wp['va'].data # [[-2.0, -2.0], [-2.0, -2.0]]
>>> print(new_wp.reconstruct(update=False))
[[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]]
which is just the same as the base sample data ``x``.
Of course we can go the other way and remove nodes from the tree. If we delete
the ``va`` node, again, we get the "not complete" tree from one of the previous
examples:
>>> del new_wp['va']
>>> print(new_wp.reconstruct(update=False))
[[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]
[ 1.5 1.5 3.5 3.5 5.5 5.5 7.5 7.5]]
Just restore the node before next examples.
>>> new_wp['va'] = wp['va'].data
If the ``update`` param in the :meth:`WaveletPacket2D.reconstruct` method is set
to ``False``, the node's :attr:`Node2D.data` attribute will not be updated.
>>> print(new_wp.data)
None
Otherwise, the :attr:`WaveletPacket2D.data` attribute will be set to the
reconstructed value.
>>> print(new_wp.reconstruct(update=True))
[[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]]
>>> print(new_wp.data)
[[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]
[ 1. 2. 3. 4. 5. 6. 7. 8.]]
Since we have an interesting WP structure built, it is a good occasion to
present the :meth:`WaveletPacket2D.get_leaf_nodes` method, which collects
non-zero leaf nodes from the WP tree:
>>> print([n.path for n in new_wp.get_leaf_nodes()])
['a', 'h', 'va', 'vh', 'vv', 'vd', 'd']
Passing the ``decompose = True`` parameter to the method will force the WP
object to do a full decomposition up to the *maximum level* of decomposition:
>>> paths = [n.path for n in new_wp.get_leaf_nodes(decompose=True)]
>>> len(paths)
64
>>> for i, path in enumerate(paths):
... if (i+1) % 8 == 0:
... print(path)
... else:
... try:
... print(path, end=' ')
... except:
... print(path, end=' ')
aaa aah aav aad aha ahh ahv ahd
ava avh avv avd ada adh adv add
haa hah hav had hha hhh hhv hhd
hva hvh hvv hvd hda hdh hdv hdd
vaa vah vav vad vha vhh vhv vhd
vva vvh vvv vvd vda vdh vdv vdd
daa dah dav dad dha dhh dhv dhd
dva dvh dvv dvd dda ddh ddv ddd
Lazy evaluation:
----------------
.. note:: This section is for demonstration of pywt internals purposes
only. Do not rely on the attribute access to nodes as presented in
this example.
>>> x = numpy.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8)
>>> wp = pywt.WaveletPacket2D(data=x, wavelet='db1', mode='symmetric')
1) At first the wp's attribute ``a`` is ``None``
>>> print(wp.a)
None
**Remember that you should not rely on the attribute access.**
2) During the first attempt to access the node it is computed
via decomposition of its parent node (the wp object itself).
>>> print(wp['a'])
a: [[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]]
3) Now the ``a`` is set to the newly created node:
>>> print(wp.a)
a: [[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]
[ 3. 7. 11. 15.]]
And so is `wp.d`:
>>> print(wp.d)
d: [[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
|