1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
"""Utilities used to generate various figures in the documentation."""
from itertools import product
import numpy as np
from matplotlib import pyplot as plt
from ._dwt import pad
__all__ = ['wavedec_keys', 'wavedec2_keys', 'draw_2d_wp_basis',
'draw_2d_fswavedecn_basis', 'boundary_mode_subplot']
def wavedec_keys(level):
"""Subband keys corresponding to a wavedec decomposition."""
approx = ''
coeffs = {}
for lev in range(level):
for k in ['a', 'd']:
coeffs[approx + k] = None
approx = 'a' * (lev + 1)
if lev < level - 1:
coeffs.pop(approx)
return list(coeffs.keys())
def wavedec2_keys(level):
"""Subband keys corresponding to a wavedec2 decomposition."""
approx = ''
coeffs = {}
for lev in range(level):
for k in ['a', 'h', 'v', 'd']:
coeffs[approx + k] = None
approx = 'a' * (lev + 1)
if lev < level - 1:
coeffs.pop(approx)
return list(coeffs.keys())
def _box(bl, ur):
"""(x, y) coordinates for the 4 lines making up a rectangular box.
Parameters
==========
bl : float
The bottom left corner of the box
ur : float
The upper right corner of the box
Returns
=======
coords : 2-tuple
The first and second elements of the tuple are the x and y coordinates
of the box.
"""
xl, xr = bl[0], ur[0]
yb, yt = bl[1], ur[1]
box_x = [xl, xr,
xr, xr,
xr, xl,
xl, xl]
box_y = [yb, yb,
yb, yt,
yt, yt,
yt, yb]
return (box_x, box_y)
def _2d_wp_basis_coords(shape, keys):
# Coordinates of the lines to be drawn by draw_2d_wp_basis
coords = []
centers = {} # retain center of boxes for use in labeling
for key in keys:
offset_x = offset_y = 0
for n, char in enumerate(key):
if char in ['h', 'd']:
offset_x += shape[0] // 2**(n + 1)
if char in ['v', 'd']:
offset_y += shape[1] // 2**(n + 1)
sx = shape[0] // 2**(n + 1)
sy = shape[1] // 2**(n + 1)
xc, yc = _box((offset_x, -offset_y),
(offset_x + sx, -offset_y - sy))
coords.append((xc, yc))
centers[key] = (offset_x + sx // 2, -offset_y - sy // 2)
return coords, centers
def draw_2d_wp_basis(shape, keys, fmt='k', plot_kwargs={}, ax=None,
label_levels=0):
"""Plot a 2D representation of a WaveletPacket2D basis."""
coords, centers = _2d_wp_basis_coords(shape, keys)
if ax is None:
fig, ax = plt.subplots(1, 1)
else:
fig = ax.get_figure()
for coord in coords:
ax.plot(coord[0], coord[1], fmt)
ax.set_axis_off()
ax.axis('square')
if label_levels > 0:
for key, c in centers.items():
if len(key) <= label_levels:
ax.text(c[0], c[1], key,
horizontalalignment='center',
verticalalignment='center')
return fig, ax
def _2d_fswavedecn_coords(shape, levels):
coords = []
centers = {} # retain center of boxes for use in labeling
for key in product(wavedec_keys(levels), repeat=2):
(key0, key1) = key
offsets = [0, 0]
widths = list(shape)
for n0, char in enumerate(key0):
if char in ['d']:
offsets[0] += shape[0] // 2**(n0 + 1)
for n1, char in enumerate(key1):
if char in ['d']:
offsets[1] += shape[1] // 2**(n1 + 1)
widths[0] = shape[0] // 2**(n0 + 1)
widths[1] = shape[1] // 2**(n1 + 1)
xc, yc = _box((offsets[0], -offsets[1]),
(offsets[0] + widths[0], -offsets[1] - widths[1]))
coords.append((xc, yc))
centers[(key0, key1)] = (offsets[0] + widths[0] / 2,
-offsets[1] - widths[1] / 2)
return coords, centers
def draw_2d_fswavedecn_basis(shape, levels, fmt='k', plot_kwargs={}, ax=None,
label_levels=0):
"""Plot a 2D representation of a WaveletPacket2D basis."""
coords, centers = _2d_fswavedecn_coords(shape, levels)
if ax is None:
fig, ax = plt.subplots(1, 1)
else:
fig = ax.get_figure()
for coord in coords:
ax.plot(coord[0], coord[1], fmt)
ax.set_axis_off()
ax.axis('square')
if label_levels > 0:
for key, c in centers.items():
lev = np.max([len(k) for k in key])
if lev <= label_levels:
ax.text(c[0], c[1], key,
horizontalalignment='center',
verticalalignment='center')
return fig, ax
def boundary_mode_subplot(x, mode, ax, symw=True):
"""Plot an illustration of the boundary mode in a subplot axis."""
# if odd-length, periodization replicates the last sample to make it even
if mode == 'periodization' and len(x) % 2 == 1:
x = np.concatenate((x, (x[-1], )))
npad = 2 * len(x)
t = np.arange(len(x) + 2 * npad)
xp = pad(x, (npad, npad), mode=mode)
ax.plot(t, xp, 'k.')
ax.set_title(mode)
# plot the original signal in red
if mode == 'periodization':
ax.plot(t[npad:npad + len(x) - 1], x[:-1], 'r.')
else:
ax.plot(t[npad:npad + len(x)], x, 'r.')
# add vertical bars indicating points of symmetry or boundary extension
o2 = np.ones(2)
left = npad
if symw:
step = len(x) - 1
rng = range(-2, 4)
else:
left -= 0.5
step = len(x)
rng = range(-2, 4)
if mode in ['smooth', 'constant', 'zero']:
rng = range(0, 2)
for rep in rng:
ax.plot((left + rep * step) * o2, [xp.min() - .5, xp.max() + .5], 'k-')
|