1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
#cython: boundscheck=False, wraparound=False
from . cimport common
from . cimport c_wt
from .common cimport pywt_index_t, MODE
from ._pywt cimport _check_dtype
cimport numpy as np
import numpy as np
include "config.pxi"
np.import_array()
cpdef dwt_max_level(size_t data_len, size_t filter_len):
return common.dwt_max_level(data_len, filter_len)
cpdef dwt_coeff_len(size_t data_len, size_t filter_len, MODE mode):
if data_len < 1:
raise ValueError("Value of data_len must be greater than zero.")
if filter_len < 1:
raise ValueError("Value of filter_len must be greater than zero.")
return common.dwt_buffer_length(data_len, filter_len, mode)
cpdef dwt_single(cdata_t[::1] data, Wavelet wavelet, MODE mode):
cdef size_t output_len = dwt_coeff_len(data.size, wavelet.dec_len, mode)
cdef np.ndarray cA, cD
cdef int retval_a, retval_d
cdef size_t data_size = data.size
if output_len < 1:
raise RuntimeError("Invalid output length.")
if data_size == 1 and (mode == MODE.MODE_REFLECT or mode == MODE.MODE_ANTIREFLECT):
raise ValueError("Input data length must be greater than 1 for [anti]reflect mode.")
if cdata_t is np.float64_t:
# TODO: Don't think these have to be 0-initialized
# TODO: Check other methods of allocating (e.g. Cython/CPython arrays)
cA = np.zeros(output_len, np.float64)
cD = np.zeros(output_len, np.float64)
with nogil:
retval_a = c_wt.double_dec_a(&data[0], data_size, wavelet.w,
<double *>cA.data, output_len, mode)
retval_d = c_wt.double_dec_d(&data[0], data_size, wavelet.w,
<double *>cD.data, output_len, mode)
if ( retval_a < 0 or retval_d < 0):
raise RuntimeError("C dwt failed.")
elif cdata_t is np.float32_t:
cA = np.zeros(output_len, np.float32)
cD = np.zeros(output_len, np.float32)
with nogil:
retval_a = c_wt.float_dec_a(&data[0], data_size, wavelet.w,
<float *>cA.data, output_len, mode)
retval_d = c_wt.float_dec_d(&data[0], data_size, wavelet.w,
<float *>cD.data, output_len, mode)
if ( retval_a < 0 or retval_d < 0):
raise RuntimeError("C dwt failed.")
IF HAVE_C99_CPLX:
if cdata_t is np.complex128_t:
cA = np.zeros(output_len, np.complex128)
cD = np.zeros(output_len, np.complex128)
with nogil:
retval_a = c_wt.double_complex_dec_a(&data[0], data_size, wavelet.w,
<double complex *>cA.data, output_len, mode)
retval_d = c_wt.double_complex_dec_d(&data[0], data_size, wavelet.w,
<double complex *>cD.data, output_len, mode)
if ( retval_a < 0 or retval_d < 0):
raise RuntimeError("C dwt failed.")
elif cdata_t is np.complex64_t:
cA = np.zeros(output_len, np.complex64)
cD = np.zeros(output_len, np.complex64)
with nogil:
retval_a = c_wt.float_complex_dec_a(&data[0], data_size, wavelet.w,
<float complex *>cA.data, output_len, mode)
retval_d = c_wt.float_complex_dec_d(&data[0], data_size, wavelet.w,
<float complex *>cD.data, output_len, mode)
if ( retval_a < 0 or retval_d < 0):
raise RuntimeError("C dwt failed.")
return (cA, cD)
cpdef dwt_axis(np.ndarray data, Wavelet wavelet, MODE mode, unsigned int axis=0):
# memory-views do not support n-dimensional arrays, use np.ndarray instead
cdef common.ArrayInfo data_info, output_info
cdef np.ndarray cD, cA
# Explicit input_shape necessary to prevent memory leak
cdef size_t[::1] input_shape, output_shape
cdef int retval = -5
if data.shape[axis] == 1 and (mode == MODE.MODE_REFLECT or mode == MODE.MODE_ANTIREFLECT):
raise ValueError("Input data length must be greater than 1 for [anti]reflect mode along the transformed axis.")
data = data.astype(_check_dtype(data), copy=False)
input_shape = <size_t [:data.ndim]> <size_t *> data.shape
output_shape = input_shape.copy()
output_shape[axis] = dwt_coeff_len(data.shape[axis], wavelet.dec_len, mode)
cA = np.empty(output_shape, data.dtype)
cD = np.empty(output_shape, data.dtype)
data_info.ndim = data.ndim
data_info.strides = <pywt_index_t *> data.strides
data_info.shape = <size_t *> data.shape
output_info.ndim = cA.ndim
output_info.strides = <pywt_index_t *> cA.strides
output_info.shape = <size_t *> cA.shape
if data.dtype == np.float64:
with nogil:
retval = c_wt.double_downcoef_axis(<double *> data.data, data_info,
<double *> cA.data, output_info,
wavelet.w, axis, common.COEF_APPROX, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
with nogil:
retval = c_wt.double_downcoef_axis(<double *> data.data, data_info,
<double *> cD.data, output_info,
wavelet.w, axis, common.COEF_DETAIL, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
elif data.dtype == np.float32:
with nogil:
retval = c_wt.float_downcoef_axis(<float *> data.data, data_info,
<float *> cA.data, output_info,
wavelet.w, axis, common.COEF_APPROX, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
with nogil:
retval = c_wt.float_downcoef_axis(<float *> data.data, data_info,
<float *> cD.data, output_info,
wavelet.w, axis, common.COEF_DETAIL, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
IF HAVE_C99_CPLX:
if data.dtype == np.complex64:
with nogil:
retval = c_wt.float_complex_downcoef_axis(<float complex *> data.data, data_info,
<float complex *> cA.data, output_info,
wavelet.w, axis, common.COEF_APPROX, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
with nogil:
retval = c_wt.float_complex_downcoef_axis(<float complex *> data.data, data_info,
<float complex *> cD.data, output_info,
wavelet.w, axis, common.COEF_DETAIL, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
elif data.dtype == np.complex128:
with nogil:
retval = c_wt.double_complex_downcoef_axis(<double complex *> data.data, data_info,
<double complex *> cA.data, output_info,
wavelet.w, axis, common.COEF_APPROX, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
with nogil:
retval = c_wt.double_complex_downcoef_axis(<double complex *> data.data, data_info,
<double complex *> cD.data, output_info,
wavelet.w, axis, common.COEF_DETAIL, mode,
0, common.DWT_TRANSFORM)
if retval:
raise RuntimeError("C wavelet transform failed")
if retval == -5:
raise TypeError("Array must be floating point, not {}"
.format(data.dtype))
return (cA, cD)
cpdef idwt_single(np.ndarray cA, np.ndarray cD, Wavelet wavelet, MODE mode):
cdef size_t input_len, rec_len
cdef int retval
cdef np.ndarray rec
# check for size difference between arrays
if cA.size != cD.size:
raise ValueError("Coefficients arrays must have the same size.")
else:
input_len = cA.size
if cA.dtype != cD.dtype:
raise ValueError("Coefficients arrays must have the same dtype.")
# find reconstruction buffer length
rec_len = common.idwt_buffer_length(input_len, wavelet.rec_len, mode)
if rec_len < 1:
msg = ("Invalid coefficient arrays length for specified wavelet. "
"Wavelet and mode must be the same as used for decomposition.")
raise ValueError(msg)
# call idwt func. one of cA/cD can be None, then only
# reconstruction of non-null part will be performed
if cA.dtype == np.float64:
rec = np.zeros(rec_len, dtype=np.float64)
with nogil:
retval = c_wt.double_idwt(<double *>cA.data, input_len,
<double *>cD.data, input_len,
<double *>rec.data, rec_len,
wavelet.w, mode)
if retval < 0:
raise RuntimeError("C idwt failed.")
elif cA.dtype == np.float32:
rec = np.zeros(rec_len, dtype=np.float32)
with nogil:
retval = c_wt.float_idwt(<float *>cA.data, input_len,
<float *>cD.data, input_len,
<float *>rec.data, rec_len,
wavelet.w, mode)
if retval < 0:
raise RuntimeError("C idwt failed.")
IF HAVE_C99_CPLX:
if cA.dtype == np.complex128:
rec = np.zeros(rec_len, dtype=np.complex128)
with nogil:
retval = c_wt.double_complex_idwt(<double complex *>cA.data, input_len,
<double complex *>cD.data, input_len,
<double complex *>rec.data, rec_len,
wavelet.w, mode)
if retval < 0:
raise RuntimeError("C idwt failed.")
elif cA.dtype == np.complex64:
rec = np.zeros(rec_len, dtype=np.complex64)
with nogil:
retval = c_wt.float_complex_idwt(<float complex *>cA.data, input_len,
<float complex *>cD.data, input_len,
<float complex *>rec.data, rec_len,
wavelet.w, mode)
if retval < 0:
raise RuntimeError("C idwt failed.")
return rec
cpdef idwt_axis(np.ndarray coefs_a, np.ndarray coefs_d,
Wavelet wavelet, MODE mode, unsigned int axis=0):
cdef common.ArrayInfo a_info, d_info, output_info
cdef common.ArrayInfo *a_info_p = NULL
cdef common.ArrayInfo *d_info_p = NULL
cdef np.ndarray output
cdef np.dtype output_dtype
cdef void *data_a = NULL
cdef void *data_d = NULL
# Explicit input_shape necessary to prevent memory leak
cdef size_t[::1] input_shape, output_shape
cdef int retval = -5
if coefs_a is not None:
if coefs_d is not None and coefs_d.dtype.itemsize > coefs_a.dtype.itemsize:
coefs_a = coefs_a.astype(_check_dtype(coefs_d), copy=False)
else:
coefs_a = coefs_a.astype(_check_dtype(coefs_a), copy=False)
a_info.ndim = coefs_a.ndim
a_info.strides = <pywt_index_t *> coefs_a.strides
a_info.shape = <size_t *> coefs_a.shape
a_info_p = &a_info
data_a = <void *> coefs_a.data
if coefs_d is not None:
if coefs_a is not None and coefs_a.dtype.itemsize > coefs_d.dtype.itemsize:
coefs_d = coefs_d.astype(_check_dtype(coefs_a), copy=False)
else:
coefs_d = coefs_d.astype(_check_dtype(coefs_d), copy=False)
d_info.ndim = coefs_d.ndim
d_info.strides = <pywt_index_t *> coefs_d.strides
d_info.shape = <size_t *> coefs_d.shape
d_info_p = &d_info
data_d = <void *> coefs_d.data
if coefs_a is not None:
input_shape = <size_t [:coefs_a.ndim]> <size_t *> coefs_a.shape
output_dtype = coefs_a.dtype
elif coefs_d is not None:
input_shape = <size_t [:coefs_d.ndim]> <size_t *> coefs_d.shape
output_dtype = coefs_d.dtype
else:
return None
output_shape = input_shape.copy()
output_shape[axis] = common.idwt_buffer_length(input_shape[axis],
wavelet.rec_len, mode)
output = np.empty(output_shape, output_dtype)
output_info.ndim = output.ndim
output_info.strides = <pywt_index_t *> output.strides
output_info.shape = <size_t *> output.shape
if output.dtype == np.float64:
with nogil:
retval = c_wt.double_idwt_axis(<double *> data_a, a_info_p,
<double *> data_d, d_info_p,
<double *> output.data, output_info,
wavelet.w, axis, mode)
if retval:
raise RuntimeError("C inverse wavelet transform failed")
elif output.dtype == np.float32:
with nogil:
retval = c_wt.float_idwt_axis(<float *> data_a, a_info_p,
<float *> data_d, d_info_p,
<float *> output.data, output_info,
wavelet.w, axis, mode)
if retval:
raise RuntimeError("C inverse wavelet transform failed")
IF HAVE_C99_CPLX:
if output.dtype == np.complex128:
with nogil:
retval = c_wt.double_complex_idwt_axis(<double complex *> data_a, a_info_p,
<double complex *> data_d, d_info_p,
<double complex *> output.data, output_info,
wavelet.w, axis, mode)
if retval:
raise RuntimeError("C inverse wavelet transform failed")
elif output.dtype == np.complex64:
with nogil:
retval = c_wt.float_complex_idwt_axis(<float complex *> data_a, a_info_p,
<float complex *> data_d, d_info_p,
<float complex *> output.data, output_info,
wavelet.w, axis, mode)
if retval:
raise RuntimeError("C inverse wavelet transform failed")
if retval == -5:
raise TypeError("Array must be floating point, not {}"
.format(output.dtype))
return output
cpdef upcoef(bint do_rec_a, cdata_t[::1] coeffs, Wavelet wavelet, int level,
size_t take):
cdef cdata_t[::1] rec
cdef int i, retval
cdef size_t rec_len, left_bound, right_bound, coeffs_size
rec_len = 0
if level < 1:
raise ValueError("Value of level must be greater than 0.")
for i in range(level):
coeffs_size = coeffs.size
# output len
rec_len = common.reconstruction_buffer_length(coeffs.size, wavelet.dec_len)
if rec_len < 1:
raise RuntimeError("Invalid output length.")
# To mirror multi-level wavelet reconstruction behaviour, when detail
# reconstruction is requested, the dec_d variant is only called at the
# first level to generate the approximation coefficients at the second
# level. Subsequent levels apply the reconstruction filter.
if cdata_t is np.float64_t:
rec = np.zeros(rec_len, dtype=np.float64)
if do_rec_a or i > 0:
with nogil:
retval = c_wt.double_rec_a(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_a failed.")
else:
with nogil:
retval = c_wt.double_rec_d(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_d failed.")
elif cdata_t is np.float32_t:
rec = np.zeros(rec_len, dtype=np.float32)
if do_rec_a or i > 0:
with nogil:
retval = c_wt.float_rec_a(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_a failed.")
else:
with nogil:
retval = c_wt.float_rec_d(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_d failed.")
IF HAVE_C99_CPLX:
if cdata_t is np.complex128_t:
rec = np.zeros(rec_len, dtype=np.complex128)
if do_rec_a or i > 0:
with nogil:
retval = c_wt.double_complex_rec_a(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_a failed.")
else:
with nogil:
retval = c_wt.double_complex_rec_d(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_d failed.")
elif cdata_t is np.complex64_t:
rec = np.zeros(rec_len, dtype=np.complex64)
if do_rec_a or i > 0:
with nogil:
retval = c_wt.float_complex_rec_a(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_a failed.")
else:
with nogil:
retval = c_wt.float_complex_rec_d(&coeffs[0], coeffs_size, wavelet.w,
&rec[0], rec_len)
if retval < 0:
raise RuntimeError("C rec_d failed.")
# TODO: this algorithm needs some explaining
coeffs = rec
if take > 0 and take < rec_len:
left_bound = right_bound = (rec_len-take) // 2
if (rec_len-take) % 2:
# right_bound must never be zero for indexing to work
right_bound = right_bound + 1
return rec[left_bound:-right_bound]
return rec
cpdef downcoef(bint do_dec_a, cdata_t[::1] data, Wavelet wavelet, MODE mode, int level):
cdef cdata_t[::1] coeffs
cdef int i, retval
cdef size_t output_len, data_size
if level < 1:
raise ValueError("Value of level must be greater than 0.")
for i in range(level):
data_size = data.size
output_len = common.dwt_buffer_length(data.size, wavelet.dec_len, mode)
if output_len < 1:
raise RuntimeError("Invalid output length.")
# To mirror multi-level wavelet decomposition behaviour, when detail
# coefficients are requested, the dec_d variant is only called at the
# final level. All prior levels use dec_a. In other words, the detail
# coefficients at level n are those produced via the operation of the
# detail filter on the approximation coefficients of level n-1.
if cdata_t is np.float64_t:
coeffs = np.zeros(output_len, dtype=np.float64)
if do_dec_a or (i < level - 1):
with nogil:
retval = c_wt.double_dec_a(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_a failed.")
else:
with nogil:
retval = c_wt.double_dec_d(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_d failed.")
elif cdata_t is np.float32_t:
coeffs = np.zeros(output_len, dtype=np.float32)
if do_dec_a or (i < level - 1):
with nogil:
retval = c_wt.float_dec_a(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_a failed.")
else:
with nogil:
retval = c_wt.float_dec_d(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_d failed.")
IF HAVE_C99_CPLX:
if cdata_t is np.complex128_t:
coeffs = np.zeros(output_len, dtype=np.complex128)
if do_dec_a or (i < level - 1):
with nogil:
retval = c_wt.double_complex_dec_a(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_a failed.")
else:
with nogil:
retval = c_wt.double_complex_dec_d(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_d failed.")
elif cdata_t is np.complex64_t:
coeffs = np.zeros(output_len, dtype=np.complex64)
if do_dec_a or (i < level - 1):
with nogil:
retval = c_wt.float_complex_dec_a(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_a failed.")
else:
with nogil:
retval = c_wt.float_complex_dec_d(&data[0], data_size, wavelet.w,
&coeffs[0], output_len, mode)
if retval < 0:
raise RuntimeError("C dec_d failed.")
data = coeffs
return coeffs
|