1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
|
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# Copyright (c) 2012-2018 The PyWavelets Developers
# <https://github.com/PyWavelets/pywt>
# See COPYING for license details.
__doc__ = """Cython wrapper for low-level C wavelet transform implementation."""
__all__ = ['MODES', 'Modes', 'DiscreteContinuousWavelet', 'Wavelet',
'ContinuousWavelet', 'wavelist', 'families']
import warnings
import re
from . cimport c_wt
from . cimport common
from ._dwt cimport upcoef
from ._cwt cimport cwt_psi_single
from libc.math cimport pow, sqrt
import numpy as np
# Caution: order of _old_modes entries must match _Modes.modes below
_old_modes = ['zpd',
'cpd',
'sym',
'ppd',
'sp1',
'per',
]
_attr_deprecation_msg = ('{old} has been renamed to {new} and will '
'be unavailable in a future version '
'of pywt.')
# Extract float/int parameters from a wavelet name. Examples:
# re.findall(cwt_pattern, 'fbsp1-1.5-1') -> ['1', 1.5', '1']
cwt_pattern = re.compile(r'\D+(\d+\.*\d*)+')
# raises exception if the wavelet name is undefined
cdef int is_discrete_wav(WAVELET_NAME name):
cdef int is_discrete
discrete = wavelet.is_discrete_wavelet(name)
if discrete == -1:
raise ValueError("unrecognized wavelet family name")
return discrete
class _Modes(object):
"""
Because the most common and practical way of representing digital signals
in computer science is with finite arrays of values, some extrapolation of
the input data has to be performed in order to extend the signal before
computing the :ref:`Discrete Wavelet Transform <ref-dwt>` using the
cascading filter banks algorithm.
Depending on the extrapolation method, significant artifacts at the
signal's borders can be introduced during that process, which in turn may
lead to inaccurate computations of the :ref:`DWT <ref-dwt>` at the signal's
ends.
PyWavelets provides several methods of signal extrapolation that can be
used to minimize this negative effect:
zero - zero-padding 0 0 | x1 x2 ... xn | 0 0
constant - constant-padding x1 x1 | x1 x2 ... xn | xn xn
symmetric - symmetric-padding x2 x1 | x1 x2 ... xn | xn xn-1
reflect - reflect-padding x3 x2 | x1 x2 ... xn | xn-1 xn-2
periodic - periodic-padding xn-1 xn | x1 x2 ... xn | x1 x2
smooth - smooth-padding (1st derivative interpolation)
antisymmetric - -x2 -x1 | x1 x2 ... xn | -xn -xn-1
antireflect - -x3 -x2 | x1 x2 ... xn | -xn-1 -xn-2
DWT performed for these extension modes is slightly redundant, but ensure a
perfect reconstruction for IDWT. To receive the smallest possible number of
coefficients, computations can be performed with the periodization mode:
periodization - like periodic-padding but gives the smallest possible
number of decomposition coefficients. IDWT must be
performed with the same mode.
Examples
--------
>>> import pywt
>>> pywt.Modes.modes
['zero', 'constant', 'symmetric', 'reflect', 'periodic', 'smooth', 'periodization', 'antisymmetric', 'antireflect']
>>> # The different ways of passing wavelet and mode parameters
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], 'db2', 'smooth')
>>> (a, d) = pywt.dwt([1,2,3,4,5,6], pywt.Wavelet('db2'), pywt.Modes.smooth)
Notes
-----
Extending data in context of PyWavelets does not mean reallocation of the
data in computer's physical memory and copying values, but rather computing
the extra values only when they are needed. This feature saves extra
memory and CPU resources and helps to avoid page swapping when handling
relatively big data arrays on computers with low physical memory.
"""
zero = common.MODE_ZEROPAD
constant = common.MODE_CONSTANT_EDGE
symmetric = common.MODE_SYMMETRIC
reflect = common.MODE_REFLECT
periodic = common.MODE_PERIODIC
smooth = common.MODE_SMOOTH
periodization = common.MODE_PERIODIZATION
antisymmetric = common.MODE_ANTISYMMETRIC
antireflect = common.MODE_ANTIREFLECT
# Caution: order in modes list below must match _old_modes above
modes = ["zero", "constant", "symmetric", "periodic", "smooth",
"periodization", "reflect", "antisymmetric", "antireflect"]
def from_object(self, mode):
if isinstance(mode, int):
if mode <= common.MODE_INVALID or mode >= common.MODE_MAX:
raise ValueError("Invalid mode.")
m = mode
else:
try:
m = getattr(Modes, mode)
except AttributeError:
raise ValueError("Unknown mode name '%s'." % mode)
return m
def __getattr__(self, mode):
# catch deprecated mode names
if mode in _old_modes:
new_mode = Modes.modes[_old_modes.index(mode)]
warnings.warn(_attr_deprecation_msg.format(old=mode, new=new_mode),
DeprecationWarning)
mode = new_mode
return Modes.__getattribute__(mode)
Modes = _Modes()
class _DeprecatedMODES(_Modes):
msg = ("MODES has been renamed to Modes and will be "
"removed in a future version of pywt.")
def __getattribute__(self, attr):
"""Override so that deprecation warning is shown
every time MODES is used.
N.B. have to use __getattribute__ as well as __getattr__
to ensure warning on e.g. `MODES.symmetric`.
"""
if not attr.startswith('_'):
warnings.warn(_DeprecatedMODES.msg, DeprecationWarning)
return _Modes.__getattribute__(self, attr)
def __getattr__(self, attr):
"""Override so that deprecation warning is shown
every time MODES is used.
"""
warnings.warn(_DeprecatedMODES.msg, DeprecationWarning)
return _Modes.__getattr__(self, attr)
MODES = _DeprecatedMODES()
###############################################################################
# Wavelet
include "wavelets_list.pxi" # __wname_to_code
cdef object wname_to_code(name):
cdef object code_number
try:
if len(name) > 4 and name[:4] in ['cmor', 'shan', 'fbsp']:
name = name[:4]
code_number = __wname_to_code[name]
return code_number
except KeyError:
raise ValueError("Unknown wavelet name '%s', check wavelist() for the "
"list of available builtin wavelets." % name)
def wavelist(family=None, kind='all'):
"""
wavelist(family=None, kind='all')
Returns list of available wavelet names for the given family name.
Parameters
----------
family : str, optional
Short family name. If the family name is None (default) then names
of all the built-in wavelets are returned. Otherwise the function
returns names of wavelets that belong to the given family.
Valid names are::
'haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus',
'mexh', 'morl', 'cgau', 'shan', 'fbsp', 'cmor'
kind : {'all', 'continuous', 'discrete'}, optional
Whether to return only wavelet names of discrete or continuous
wavelets, or all wavelets. Default is ``'all'``.
Ignored if ``family`` is specified.
Returns
-------
wavelist : list of str
List of available wavelet names.
Examples
--------
>>> import pywt
>>> pywt.wavelist('coif')
['coif1', 'coif2', 'coif3', 'coif4', 'coif5', 'coif6', 'coif7', ...
>>> pywt.wavelist(kind='continuous')
['cgau1', 'cgau2', 'cgau3', 'cgau4', 'cgau5', 'cgau6', 'cgau7', ...
"""
cdef object wavelets, sorting_list
if kind not in ('all', 'continuous', 'discrete'):
raise ValueError("Unrecognized value for `kind`: %s" % kind)
def _check_kind(name, kind):
if kind == 'all':
return True
family_code, family_number = wname_to_code(name)
is_discrete = is_discrete_wav(family_code)
if kind == 'discrete':
return is_discrete
else:
return not is_discrete
sorting_list = [] # for natural sorting order
wavelets = []
cdef object name
if family is None:
for name in __wname_to_code:
if _check_kind(name, kind):
sorting_list.append((name[:2], len(name), name))
elif family in __wfamily_list_short:
for name in __wname_to_code:
if name.startswith(family):
sorting_list.append((name[:2], len(name), name))
else:
raise ValueError("Invalid short family name '%s'." % family)
sorting_list.sort()
for x, x, name in sorting_list:
wavelets.append(name)
return wavelets
def families(int short=True):
"""
families(short=True)
Returns a list of available built-in wavelet families.
Currently the built-in families are:
* Haar (``haar``)
* Daubechies (``db``)
* Symlets (``sym``)
* Coiflets (``coif``)
* Biorthogonal (``bior``)
* Reverse biorthogonal (``rbio``)
* `"Discrete"` FIR approximation of Meyer wavelet (``dmey``)
* Gaussian wavelets (``gaus``)
* Mexican hat wavelet (``mexh``)
* Morlet wavelet (``morl``)
* Complex Gaussian wavelets (``cgau``)
* Shannon wavelets (``shan``)
* Frequency B-Spline wavelets (``fbsp``)
* Complex Morlet wavelets (``cmor``)
Parameters
----------
short : bool, optional
Use short names (default: True).
Returns
-------
families : list
List of available wavelet families.
Examples
--------
>>> import pywt
>>> pywt.families()
['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey', 'gaus', 'mexh', 'morl', 'cgau', 'shan', 'fbsp', 'cmor']
>>> pywt.families(short=False)
['Haar', 'Daubechies', 'Symlets', 'Coiflets', 'Biorthogonal', 'Reverse biorthogonal', 'Discrete Meyer (FIR Approximation)', 'Gaussian', 'Mexican hat wavelet', 'Morlet wavelet', 'Complex Gaussian wavelets', 'Shannon wavelets', 'Frequency B-Spline wavelets', 'Complex Morlet wavelets']
"""
if short:
return __wfamily_list_short[:]
return __wfamily_list_long[:]
def DiscreteContinuousWavelet(name=u"", object filter_bank=None):
"""
DiscreteContinuousWavelet(name, filter_bank=None) returns a
Wavelet or a ContinuousWavelet object depending of the given name.
In order to use a built-in wavelet the parameter name must be
a valid name from the wavelist() list.
To create a custom wavelet object, filter_bank parameter must
be specified. It can be either a list of four filters or an object
that a `filter_bank` attribute which returns a list of four
filters - just like the Wavelet instance itself.
For a ContinuousWavelet, filter_bank cannot be used and must remain unset.
"""
if not name and filter_bank is None:
raise TypeError("Wavelet name or filter bank must be specified.")
if filter_bank is None:
name = name.lower()
family_code, family_number = wname_to_code(name)
if is_discrete_wav(family_code):
return Wavelet(name, filter_bank)
else:
return ContinuousWavelet(name)
else:
return Wavelet(name, filter_bank)
cdef public class Wavelet [type WaveletType, object WaveletObject]:
"""
Wavelet(name, filter_bank=None) object describe properties of
a wavelet identified by name.
In order to use a built-in wavelet the parameter name must be
a valid name from the wavelist() list.
To create a custom wavelet object, filter_bank parameter must
be specified. It can be either a list of four filters or an object
that a `filter_bank` attribute which returns a list of four
filters - just like the Wavelet instance itself.
"""
#cdef readonly properties
def __cinit__(self, name=u"", object filter_bank=None):
cdef object family_code, family_number
cdef object filters
cdef pywt_index_t filter_length
cdef object dec_lo, dec_hi, rec_lo, rec_hi
if not name and filter_bank is None:
raise TypeError("Wavelet name or filter bank must be specified.")
if filter_bank is None:
# builtin wavelet
self.name = name.lower()
family_code, family_number = wname_to_code(self.name)
if is_discrete_wav(family_code):
self.w = <wavelet.DiscreteWavelet*> wavelet.discrete_wavelet(family_code, family_number)
if self.w is NULL:
if self.name in wavelist(kind='continuous'):
raise ValueError("The `Wavelet` class is for discrete "
"wavelets, %s is a continuous wavelet. Use "
"pywt.ContinuousWavelet instead" % self.name)
else:
raise ValueError("Invalid wavelet name '%s'." % self.name)
self.number = family_number
else:
if hasattr(filter_bank, "filter_bank"):
filters = filter_bank.filter_bank
if len(filters) != 4:
raise ValueError("Expected filter bank with 4 filters, "
"got filter bank with %d filters." % len(filters))
elif hasattr(filter_bank, "get_filters_coeffs"):
msg = ("Creating custom Wavelets using objects that define "
"`get_filters_coeffs` method is deprecated. "
"The `filter_bank` parameter should define a "
"`filter_bank` attribute instead of "
"`get_filters_coeffs` method.")
warnings.warn(msg, DeprecationWarning)
filters = filter_bank.get_filters_coeffs()
if len(filters) != 4:
msg = ("Expected filter bank with 4 filters, got filter "
"bank with %d filters." % len(filters))
raise ValueError(msg)
else:
filters = filter_bank
if len(filters) != 4:
msg = ("Expected list of 4 filters coefficients, "
"got %d filters." % len(filters))
raise ValueError(msg)
try:
dec_lo = np.asarray(filters[0], dtype=np.float64)
dec_hi = np.asarray(filters[1], dtype=np.float64)
rec_lo = np.asarray(filters[2], dtype=np.float64)
rec_hi = np.asarray(filters[3], dtype=np.float64)
except TypeError:
raise ValueError("Filter bank with numeric values required.")
if not (1 == dec_lo.ndim == dec_hi.ndim ==
rec_lo.ndim == rec_hi.ndim):
raise ValueError("All filters in filter bank must be 1D.")
filter_length = len(dec_lo)
if not (0 < filter_length == len(dec_hi) == len(rec_lo) ==
len(rec_hi)) > 0:
raise ValueError("All filters in filter bank must have "
"length greater than 0.")
self.w = <wavelet.DiscreteWavelet*> wavelet.blank_discrete_wavelet(filter_length)
if self.w is NULL:
raise MemoryError("Could not allocate memory for given "
"filter bank.")
# copy values to struct
copy_object_to_float32_array(dec_lo, self.w.dec_lo_float)
copy_object_to_float32_array(dec_hi, self.w.dec_hi_float)
copy_object_to_float32_array(rec_lo, self.w.rec_lo_float)
copy_object_to_float32_array(rec_hi, self.w.rec_hi_float)
copy_object_to_float64_array(dec_lo, self.w.dec_lo_double)
copy_object_to_float64_array(dec_hi, self.w.dec_hi_double)
copy_object_to_float64_array(rec_lo, self.w.rec_lo_double)
copy_object_to_float64_array(rec_hi, self.w.rec_hi_double)
self.name = name
def __dealloc__(self):
if self.w is not NULL:
wavelet.free_discrete_wavelet(self.w)
self.w = NULL
def __reduce__(self):
return (Wavelet, (self.name, self.filter_bank))
def __len__(self):
return self.w.dec_len
property dec_lo:
"Lowpass decomposition filter"
def __get__(self):
return float64_array_to_list(self.w.dec_lo_double, self.w.dec_len)
property dec_hi:
"Highpass decomposition filter"
def __get__(self):
return float64_array_to_list(self.w.dec_hi_double, self.w.dec_len)
property rec_lo:
"Lowpass reconstruction filter"
def __get__(self):
return float64_array_to_list(self.w.rec_lo_double, self.w.rec_len)
property rec_hi:
"Highpass reconstruction filter"
def __get__(self):
return float64_array_to_list(self.w.rec_hi_double, self.w.rec_len)
property rec_len:
"Reconstruction filters length"
def __get__(self):
return self.w.rec_len
property dec_len:
"Decomposition filters length"
def __get__(self):
return self.w.dec_len
property family_number:
"Wavelet family number"
def __get__(self):
return self.number
property family_name:
"Wavelet family name"
def __get__(self):
return self.w.base.family_name.decode('latin-1')
property short_family_name:
"Short wavelet family name"
def __get__(self):
return self.w.base.short_name.decode('latin-1')
property orthogonal:
"Is orthogonal"
def __get__(self):
return bool(self.w.base.orthogonal)
def __set__(self, int value):
self.w.base.orthogonal = (value != 0)
property biorthogonal:
"Is biorthogonal"
def __get__(self):
return bool(self.w.base.biorthogonal)
def __set__(self, int value):
self.w.base.biorthogonal = (value != 0)
property symmetry:
"Wavelet symmetry"
def __get__(self):
if self.w.base.symmetry == wavelet.ASYMMETRIC:
return "asymmetric"
elif self.w.base.symmetry == wavelet.NEAR_SYMMETRIC:
return "near symmetric"
elif self.w.base.symmetry == wavelet.SYMMETRIC:
return "symmetric"
elif self.w.base.symmetry == wavelet.ANTI_SYMMETRIC:
return "anti-symmetric"
else:
return "unknown"
property vanishing_moments_psi:
"Number of vanishing moments for wavelet function"
def __get__(self):
if self.w.vanishing_moments_psi >= 0:
return self.w.vanishing_moments_psi
property vanishing_moments_phi:
"Number of vanishing moments for scaling function"
def __get__(self):
if self.w.vanishing_moments_phi >= 0:
return self.w.vanishing_moments_phi
property filter_bank:
"""Returns tuple of wavelet filters coefficients
(dec_lo, dec_hi, rec_lo, rec_hi)
"""
def __get__(self):
return (self.dec_lo, self.dec_hi, self.rec_lo, self.rec_hi)
def get_filters_coeffs(self):
warnings.warn("The `get_filters_coeffs` method is deprecated. "
"Use `filter_bank` attribute instead.", DeprecationWarning)
return self.filter_bank
property inverse_filter_bank:
"""Tuple of inverse wavelet filters coefficients
(rec_lo[::-1], rec_hi[::-1], dec_lo[::-1], dec_hi[::-1])
"""
def __get__(self):
return (self.rec_lo[::-1], self.rec_hi[::-1], self.dec_lo[::-1],
self.dec_hi[::-1])
def get_reverse_filters_coeffs(self):
warnings.warn("The `get_reverse_filters_coeffs` method is deprecated. "
"Use `inverse_filter_bank` attribute instead.",
DeprecationWarning)
return self.inverse_filter_bank
def wavefun(self, int level=8):
"""
wavefun(self, level=8)
Calculates approximations of scaling function (`phi`) and wavelet
function (`psi`) on xgrid (`x`) at a given level of refinement.
Parameters
----------
level : int, optional
Level of refinement (default: 8).
Returns
-------
[phi, psi, x] : array_like
For orthogonal wavelets returns scaling function, wavelet function
and xgrid - [phi, psi, x].
[phi_d, psi_d, phi_r, psi_r, x] : array_like
For biorthogonal wavelets returns scaling and wavelet function both
for decomposition and reconstruction and xgrid
Examples
--------
>>> import pywt
>>> # Orthogonal
>>> wavelet = pywt.Wavelet('db2')
>>> phi, psi, x = wavelet.wavefun(level=5)
>>> # Biorthogonal
>>> wavelet = pywt.Wavelet('bior3.5')
>>> phi_d, psi_d, phi_r, psi_r, x = wavelet.wavefun(level=5)
"""
cdef pywt_index_t filter_length "filter_length"
cdef pywt_index_t right_extent_length "right_extent_length"
cdef pywt_index_t output_length "output_length"
cdef pywt_index_t keep_length "keep_length"
cdef np.float64_t n, n_mul
cdef np.float64_t[::1] n_arr = <np.float64_t[:1]> &n,
cdef np.float64_t[::1] n_mul_arr = <np.float64_t[:1]> &n_mul
cdef double p "p"
cdef double mul "mul"
cdef Wavelet other "other"
cdef phi_d, psi_d, phi_r, psi_r
cdef psi_i
cdef np.float64_t[::1] x, psi
n = pow(sqrt(2.), <double>level)
p = (pow(2., <double>level))
if self.w.base.orthogonal:
filter_length = self.w.dec_len
output_length = <pywt_index_t> ((filter_length-1) * p + 1)
keep_length = get_keep_length(output_length, level, filter_length)
output_length = fix_output_length(output_length, keep_length)
right_extent_length = get_right_extent_length(output_length,
keep_length)
# phi, psi, x
return [np.concatenate(([0.],
keep(upcoef(True, n_arr, self, level, 0), keep_length),
np.zeros(right_extent_length))),
np.concatenate(([0.],
keep(upcoef(False, n_arr, self, level, 0), keep_length),
np.zeros(right_extent_length))),
np.linspace(0.0, (output_length-1)/p, output_length)]
else:
if self.w.base.biorthogonal and (self.w.vanishing_moments_psi % 4) != 1:
# FIXME: I don't think this branch is well tested
n_mul = -n
else:
n_mul = n
other = Wavelet(filter_bank=self.inverse_filter_bank)
filter_length = other.w.dec_len
output_length = <pywt_index_t> ((filter_length-1) * p)
keep_length = get_keep_length(output_length, level, filter_length)
output_length = fix_output_length(output_length, keep_length)
right_extent_length = get_right_extent_length(output_length, keep_length)
phi_d = np.concatenate(([0.],
keep(upcoef(True, n_arr, other, level, 0), keep_length),
np.zeros(right_extent_length)))
psi_d = np.concatenate(([0.],
keep(upcoef(False, n_mul_arr, other, level, 0),
keep_length),
np.zeros(right_extent_length)))
filter_length = self.w.dec_len
output_length = <pywt_index_t> ((filter_length-1) * p)
keep_length = get_keep_length(output_length, level, filter_length)
output_length = fix_output_length(output_length, keep_length)
right_extent_length = get_right_extent_length(output_length, keep_length)
phi_r = np.concatenate(([0.],
keep(upcoef(True, n_arr, self, level, 0), keep_length),
np.zeros(right_extent_length)))
psi_r = np.concatenate(([0.],
keep(upcoef(False, n_mul_arr, self, level, 0),
keep_length),
np.zeros(right_extent_length)))
return [phi_d, psi_d, phi_r, psi_r,
np.linspace(0.0, (output_length - 1) / p, output_length)]
def __str__(self):
s = []
for x in [
u"Wavelet %s" % self.name,
u" Family name: %s" % self.family_name,
u" Short name: %s" % self.short_family_name,
u" Filters length: %d" % self.dec_len,
u" Orthogonal: %s" % self.orthogonal,
u" Biorthogonal: %s" % self.biorthogonal,
u" Symmetry: %s" % self.symmetry,
u" DWT: True",
u" CWT: False"
]:
s.append(x.rstrip())
return u'\n'.join(s)
def __repr__(self):
repr = "{module}.{classname}(name='{name}', filter_bank={filter_bank})"
return repr.format(module=type(self).__module__,
classname=type(self).__name__,
name=self.name,
filter_bank=self.filter_bank)
cdef public class ContinuousWavelet [type ContinuousWaveletType, object ContinuousWaveletObject]:
"""
ContinuousWavelet(name, dtype) object describe properties of
a continuous wavelet identified by name.
In order to use a built-in wavelet the parameter name must be
a valid name from the wavelist() list.
"""
#cdef readonly properties
def __cinit__(self, name=u"", dtype=np.float64):
cdef object family_code, family_number
# builtin wavelet
self.name = name.lower()
self.dt = dtype
if np.dtype(self.dt) not in [np.float32, np.float64]:
raise ValueError(
"Only np.float32 and np.float64 dtype are supported for "
"ContinuousWavelet objects.")
if len(self.name) >= 4 and self.name[:4] in ['cmor', 'shan', 'fbsp']:
base_name = self.name[:4]
if base_name == self.name:
if base_name == 'fbsp':
msg = (
"Wavelets of family {0}, without parameters "
"specified in the name are deprecated. The name "
"should take the form {0}M-B-C where M is the spline "
"order and B, C are floats representing the bandwidth "
"frequency and center frequency, respectively "
"(example: {0}1-1.5-1.0).").format(base_name)
else:
msg = (
"Wavelets from the family {0}, without parameters "
"specified in the name are deprecated. The name "
"should takethe form {0}B-C where B and C are floats "
"representing the bandwidth frequency and center "
"frequency, respectively (example: {0}1.5-1.0)."
).format(base_name)
warnings.warn(msg, FutureWarning)
else:
base_name = self.name
family_code, family_number = wname_to_code(base_name)
self.w = <wavelet.ContinuousWavelet*> wavelet.continuous_wavelet(
family_code, family_number)
if self.w is NULL:
raise ValueError("Invalid wavelet name '%s'." % self.name)
self.number = family_number
# set wavelet attributes based on frequencies extracted from the name
if base_name != self.name:
freqs = re.findall(cwt_pattern, self.name)
if base_name in ['shan', 'cmor']:
if len(freqs) != 2:
raise ValueError(
("For wavelets of family {0}, the name should take "
"the form {0}B-C where B and C are floats "
"representing the bandwidth frequency and center "
"frequency, respectively. (example: {0}1.5-1.0)"
).format(base_name))
self.w.bandwidth_frequency = float(freqs[0])
self.w.center_frequency = float(freqs[1])
elif base_name in ['fbsp', ]:
if len(freqs) != 3:
raise ValueError(
("For wavelets of family {0}, the name should take "
"the form {0}M-B-C where M is the spline order and B"
", C are floats representing the bandwidth frequency "
"and center frequency, respectively "
"(example: {0}1-1.5-1.0).").format(base_name))
M = float(freqs[0])
self.w.bandwidth_frequency = float(freqs[1])
self.w.center_frequency = float(freqs[2])
if M < 1 or M % 1 != 0:
raise ValueError(
"Wavelet spline order must be an integer >= 1.")
self.w.fbsp_order = int(M)
else:
raise ValueError(
"Invalid continuous wavelet name '%s'." % self.name)
def __dealloc__(self):
if self.w is not NULL:
wavelet.free_continuous_wavelet(self.w)
self.w = NULL
def __reduce__(self):
return (ContinuousWavelet, (self.name, self.dt))
property family_number:
"Wavelet family number"
def __get__(self):
return self.number
property family_name:
"Wavelet family name"
def __get__(self):
return self.w.base.family_name.decode('latin-1')
property short_family_name:
"Short wavelet family name"
def __get__(self):
return self.w.base.short_name.decode('latin-1')
property orthogonal:
"Is orthogonal"
def __get__(self):
return bool(self.w.base.orthogonal)
def __set__(self, int value):
self.w.base.orthogonal = (value != 0)
property biorthogonal:
"Is biorthogonal"
def __get__(self):
return bool(self.w.base.biorthogonal)
def __set__(self, int value):
self.w.base.biorthogonal = (value != 0)
property complex_cwt:
"CWT is complex"
def __get__(self):
return bool(self.w.complex_cwt)
def __set__(self, int value):
self.w.complex_cwt = (value != 0)
property lower_bound:
"Lower Bound"
def __get__(self):
if self.w.lower_bound != self.w.upper_bound:
return self.w.lower_bound
def __set__(self, float value):
self.w.lower_bound = value
property upper_bound:
"Upper Bound"
def __get__(self):
if self.w.upper_bound != self.w.lower_bound:
return self.w.upper_bound
def __set__(self, float value):
self.w.upper_bound = value
property center_frequency:
"Center frequency (shan, fbsp, cmor)"
def __get__(self):
if self.w.center_frequency > 0:
return self.w.center_frequency
def __set__(self, float value):
self.w.center_frequency = value
property bandwidth_frequency:
"Bandwidth frequency (shan, fbsp, cmor)"
def __get__(self):
if self.w.bandwidth_frequency > 0:
return self.w.bandwidth_frequency
def __set__(self, float value):
self.w.bandwidth_frequency = value
property fbsp_order:
"order parameter for fbsp"
def __get__(self):
if self.w.fbsp_order != 0:
return self.w.fbsp_order
def __set__(self, unsigned int value):
self.w.fbsp_order = value
property symmetry:
"Wavelet symmetry"
def __get__(self):
if self.w.base.symmetry == wavelet.ASYMMETRIC:
return "asymmetric"
elif self.w.base.symmetry == wavelet.NEAR_SYMMETRIC:
return "near symmetric"
elif self.w.base.symmetry == wavelet.SYMMETRIC:
return "symmetric"
elif self.w.base.symmetry == wavelet.ANTI_SYMMETRIC:
return "anti-symmetric"
else:
return "unknown"
def wavefun(self, int level=8, length=None):
"""
wavefun(self, level=8, length=None)
Calculates approximations of wavelet function (``psi``) on xgrid
(``x``) at a given level of refinement or length itself.
Parameters
----------
level : int, optional
Level of refinement (default: 8). Defines the length by
``2**level`` if length is not set.
length : int, optional
Number of samples. If set to None, the length is set to
``2**level`` instead.
Returns
-------
psi : array_like
Wavelet function computed for grid xval
xval : array_like
grid going from lower_bound to upper_bound
Notes
-----
The effective support are set with ``lower_bound`` and ``upper_bound``.
The wavelet function is complex for ``'cmor'``, ``'shan'``, ``'fbsp'``
and ``'cgau'``.
The complex frequency B-spline wavelet (``'fbsp'``) has
``bandwidth_frequency``, ``center_frequency`` and ``fbsp_order`` as
additional parameters.
The complex Shannon wavelet (``'shan'``) has ``bandwidth_frequency``
and ``center_frequency`` as additional parameters.
The complex Morlet wavelet (``'cmor'``) has ``bandwidth_frequency``
and ``center_frequency`` as additional parameters.
Examples
--------
>>> import pywt
>>> import matplotlib.pyplot as plt
>>> lb = -5
>>> ub = 5
>>> n = 1000
>>> wavelet = pywt.ContinuousWavelet("gaus8")
>>> wavelet.upper_bound = ub
>>> wavelet.lower_bound = lb
>>> [psi,xval] = wavelet.wavefun(length=n)
>>> plt.plot(xval,psi) # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at ...>]
>>> plt.title("Gaussian Wavelet of order 8") # doctest: +ELLIPSIS
<matplotlib.text.Text object at ...>
>>> plt.show() # doctest: +SKIP
>>> import pywt
>>> import matplotlib.pyplot as plt
>>> lb = -5
>>> ub = 5
>>> n = 1000
>>> wavelet = pywt.ContinuousWavelet("cgau4")
>>> wavelet.upper_bound = ub
>>> wavelet.lower_bound = lb
>>> [psi,xval] = wavelet.wavefun(length=n)
>>> plt.subplot(211) # doctest: +ELLIPSIS
<matplotlib.axes._subplots.AxesSubplot object at ...>
>>> plt.plot(xval,np.real(psi)) # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at ...>]
>>> plt.title("Real part") # doctest: +ELLIPSIS
<matplotlib.text.Text object at ...>
>>> plt.subplot(212) # doctest: +ELLIPSIS
<matplotlib.axes._subplots.AxesSubplot object at ...>
>>> plt.plot(xval,np.imag(psi)) # doctest: +ELLIPSIS
[<matplotlib.lines.Line2D object at ...>]
>>> plt.title("Imaginary part") # doctest: +ELLIPSIS
<matplotlib.text.Text object at ...>
>>> plt.show() # doctest: +SKIP
"""
cdef pywt_index_t output_length "output_length"
cdef psi_i, psi_r, psi
cdef np.float64_t[::1] x64, psi64
cdef np.float32_t[::1] x32, psi32
p = (pow(2., <double>level))
if self.w is not NULL:
if length is None:
output_length = <pywt_index_t>p
else:
output_length = <pywt_index_t>length
if (self.dt == np.float64):
x64 = np.linspace(self.w.lower_bound, self.w.upper_bound, output_length, dtype=self.dt)
else:
x32 = np.linspace(self.w.lower_bound, self.w.upper_bound, output_length, dtype=self.dt)
if self.w.complex_cwt:
if (self.dt == np.float64):
psi_r, psi_i = cwt_psi_single(x64, self, output_length)
return [np.asarray(psi_r, dtype=self.dt) + 1j * np.asarray(psi_i, dtype=self.dt),
np.asarray(x64, dtype=self.dt)]
else:
psi_r, psi_i = cwt_psi_single(x32, self, output_length)
return [np.asarray(psi_r, dtype=self.dt) + 1j * np.asarray(psi_i, dtype=self.dt),
np.asarray(x32, dtype=self.dt)]
else:
if (self.dt == np.float64):
psi = cwt_psi_single(x64, self, output_length)
return [np.asarray(psi, dtype=self.dt),
np.asarray(x64, dtype=self.dt)]
else:
psi = cwt_psi_single(x32, self, output_length)
return [np.asarray(psi, dtype=self.dt),
np.asarray(x32, dtype=self.dt)]
def __str__(self):
s = []
for x in [
u"ContinuousWavelet %s" % self.name,
u" Family name: %s" % self.family_name,
u" Short name: %s" % self.short_family_name,
u" Symmetry: %s" % self.symmetry,
u" DWT: False",
u" CWT: True",
u" Complex CWT: %s" % self.complex_cwt
]:
s.append(x.rstrip())
return u'\n'.join(s)
def __repr__(self):
repr = "{module}.{classname}(name='{name}')"
return repr.format(module=type(self).__module__,
classname=type(self).__name__,
name=self.name)
cdef pywt_index_t get_keep_length(pywt_index_t output_length,
int level, pywt_index_t filter_length):
cdef pywt_index_t lplus "lplus"
cdef pywt_index_t keep_length "keep_length"
cdef int i "i"
lplus = filter_length - 2
keep_length = 1
for i in range(level):
keep_length = 2*keep_length+lplus
return keep_length
cdef pywt_index_t fix_output_length(pywt_index_t output_length, pywt_index_t keep_length):
if output_length-keep_length-2 < 0:
output_length = keep_length+2
return output_length
cdef pywt_index_t get_right_extent_length(pywt_index_t output_length, pywt_index_t keep_length):
return output_length - keep_length - 1
def wavelet_from_object(wavelet):
return c_wavelet_from_object(wavelet)
cdef c_wavelet_from_object(wavelet):
if isinstance(wavelet, (Wavelet, ContinuousWavelet)):
return wavelet
else:
return Wavelet(wavelet)
cpdef np.dtype _check_dtype(data):
"""Check for cA/cD input what (if any) the dtype is."""
cdef np.dtype dt
try:
dt = data.dtype
if dt not in (np.float64, np.float32, np.complex64, np.complex128):
if dt == np.half:
# half-precision input converted to single precision
dt = np.dtype('float32')
elif dt == np.complex256:
# complex256 is not supported. run at reduced precision
dt = np.dtype('complex128')
else:
# integer input was always accepted; convert to float64
dt = np.dtype('float64')
except AttributeError:
dt = np.dtype('float64')
return dt
# TODO: Can this be replaced by the take parameter of upcoef? Or vice-versa?
def keep(arr, keep_length):
length = len(arr)
if keep_length < length:
left_bound = (length - keep_length) // 2
return arr[left_bound:left_bound + keep_length]
return arr
# Some utility functions
cdef object float64_array_to_list(double* data, pywt_index_t n):
cdef pywt_index_t i
cdef object app
cdef object ret
ret = []
app = ret.append
for i in range(n):
app(data[i])
return ret
cdef void copy_object_to_float64_array(source, double* dest) except *:
cdef pywt_index_t i
cdef double x
i = 0
for x in source:
dest[i] = x
i = i + 1
cdef void copy_object_to_float32_array(source, float* dest) except *:
cdef pywt_index_t i
cdef float x
i = 0
for x in source:
dest[i] = x
i = i + 1
|