1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
#cython: boundscheck=False, wraparound=False
from . cimport common
from . cimport c_wt
from cpython cimport bool
import warnings
import numpy as np
cimport numpy as np
from .common cimport pywt_index_t
from ._pywt cimport c_wavelet_from_object, cdata_t, Wavelet, _check_dtype
include "config.pxi"
np.import_array()
def swt_max_level(size_t input_len):
"""
swt_max_level(input_len)
Calculates the maximum level of Stationary Wavelet Transform for data of
given length.
Parameters
----------
input_len : int
Input data length.
Returns
-------
max_level : int
Maximum level of Stationary Wavelet Transform for data of given length.
Notes
-----
For the current implementation of the stationary wavelet transform, this
corresponds to the number of times ``input_len`` is evenly divisible by
two. In other words, for an n-level transform, the signal length must be a
multiple of ``2**n``. ``numpy.pad`` can be used to pad a signal up to an
appropriate length as needed.
"""
if input_len < 1:
raise ValueError("Cannot apply swt to a size 0 signal.")
max_level = common.swt_max_level(input_len)
if max_level == 0:
warnings.warn(
"No levels of stationary wavelet decomposition are possible. The "
"signal to be transformed must have a size that is a multiple "
"of 2**n for an n-level decomposition.")
return max_level
def swt(cdata_t[::1] data, Wavelet wavelet, size_t level, size_t start_level,
bool trim_approx=False):
cdef cdata_t[::1] cA, cD
cdef Wavelet w
cdef int retval
cdef size_t end_level = start_level + level
cdef size_t data_size, output_len, i
if data.size % 2:
raise ValueError("Length of data must be even.")
if data.size < 1:
raise ValueError("Data must have non-zero size")
if level < 1:
raise ValueError("Level value must be greater than zero.")
if start_level >= common.swt_max_level(data.size):
raise ValueError("start_level must be less than %d." %
common.swt_max_level(data.size))
if end_level > common.swt_max_level(data.size):
msg = ("Level value too high (max level for current data size and "
"start_level is %d)." % (
common.swt_max_level(data.size) - start_level))
raise ValueError(msg)
output_len = common.swt_buffer_length(data.size)
if output_len < 1:
raise RuntimeError("Invalid output length.")
ret = []
for i in range(start_level+1, end_level+1):
data_size = data.size
# alloc memory, decompose D
if cdata_t is np.float64_t:
cD = np.zeros(output_len, dtype=np.float64)
with nogil:
retval = c_wt.double_swt_d(&data[0], data_size, wavelet.w,
&cD[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
elif cdata_t is np.float32_t:
cD = np.zeros(output_len, dtype=np.float32)
with nogil:
retval = c_wt.float_swt_d(&data[0], data_size, wavelet.w,
&cD[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
IF HAVE_C99_CPLX:
if cdata_t is np.complex128_t:
cD = np.zeros(output_len, dtype=np.complex128)
with nogil:
retval = c_wt.double_complex_swt_d(&data[0], data_size, wavelet.w,
&cD[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
elif cdata_t is np.complex64_t:
cD = np.zeros(output_len, dtype=np.complex64)
with nogil:
retval = c_wt.float_complex_swt_d(&data[0], data_size, wavelet.w,
&cD[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
# alloc memory, decompose A
if cdata_t is np.float64_t:
cA = np.zeros(output_len, dtype=np.float64)
with nogil:
retval = c_wt.double_swt_a(&data[0], data_size, wavelet.w,
&cA[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
elif cdata_t is np.float32_t:
cA = np.zeros(output_len, dtype=np.float32)
with nogil:
retval = c_wt.float_swt_a(&data[0], data_size, wavelet.w,
&cA[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
IF HAVE_C99_CPLX:
if cdata_t is np.complex128_t:
cA = np.zeros(output_len, dtype=np.complex128)
with nogil:
retval = c_wt.double_complex_swt_a(&data[0], data_size, wavelet.w,
&cA[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
elif cdata_t is np.complex64_t:
cA = np.zeros(output_len, dtype=np.complex64)
with nogil:
retval = c_wt.float_complex_swt_a(&data[0], data_size, wavelet.w,
&cA[0], output_len, i)
if retval < 0:
raise RuntimeError("C swt failed.")
data = cA
if not trim_approx:
ret.append((np.asarray(cA), np.asarray(cD)))
else:
ret.append(np.asarray(cD))
if trim_approx:
ret.append(np.asarray(cA))
ret.reverse()
return ret
cpdef swt_axis(np.ndarray data, Wavelet wavelet, size_t level,
size_t start_level, unsigned int axis=0,
bool trim_approx=False):
# memory-views do not support n-dimensional arrays, use np.ndarray instead
cdef common.ArrayInfo data_info, output_info
cdef np.ndarray cD, cA
cdef size_t[::1] output_shape
cdef size_t end_level = start_level + level
cdef int retval = -5
cdef size_t i
if data.shape[axis] % 2:
raise ValueError("Length of data must be even along the transform axis.")
if data.shape[axis] < 1:
raise ValueError("Data must have non-zero size along the transform axis.")
if level < 1:
raise ValueError("Level value must be greater than zero.")
if start_level >= common.swt_max_level(data.shape[axis]):
raise ValueError("start_level must be less than %d." %
common.swt_max_level(data.shape[axis]))
if end_level > common.swt_max_level(data.shape[axis]):
msg = ("Level value too high (max level for current data size and "
"start_level is %d)." % (
common.swt_max_level(data.shape[axis]) - start_level))
raise ValueError(msg)
data = data.astype(_check_dtype(data), copy=False)
# For SWT, the output matches the shape of the input
output_shape = <size_t [:data.ndim]> <size_t *> data.shape
data_info.ndim = data.ndim
data_info.strides = <pywt_index_t *> data.strides
data_info.shape = <size_t *> data.shape
output_info.ndim = data.ndim
ret = []
for i in range(start_level+1, end_level+1):
cA = np.empty(output_shape, dtype=data.dtype)
cD = np.empty(output_shape, dtype=data.dtype)
# strides won't match data_info.strides if data is not C-contiguous
output_info.strides = <pywt_index_t *> cA.strides
output_info.shape = <size_t *> cA.shape
if data.dtype == np.float64:
with nogil:
retval = c_wt.double_downcoef_axis(
<double *> data.data, data_info,
<double *> cA.data, output_info,
wavelet.w, axis,
common.COEF_APPROX, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" % retval)
with nogil:
retval = c_wt.double_downcoef_axis(
<double *> data.data, data_info,
<double *> cD.data, output_info,
wavelet.w, axis,
common.COEF_DETAIL, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" % retval)
elif data.dtype == np.float32:
with nogil:
retval = c_wt.float_downcoef_axis(
<float *> data.data, data_info,
<float *> cA.data, output_info,
wavelet.w, axis,
common.COEF_APPROX, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" % retval)
with nogil:
retval = c_wt.float_downcoef_axis(
<float *> data.data, data_info,
<float *> cD.data, output_info,
wavelet.w, axis,
common.COEF_DETAIL, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" % retval)
IF HAVE_C99_CPLX:
if data.dtype == np.complex128:
cA = np.zeros(output_shape, dtype=np.complex128)
with nogil:
retval = c_wt.double_complex_downcoef_axis(
<double complex *> data.data, data_info,
<double complex *> cA.data, output_info,
wavelet.w, axis,
common.COEF_APPROX, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" %
retval)
cD = np.zeros(output_shape, dtype=np.complex128)
with nogil:
retval = c_wt.double_complex_downcoef_axis(
<double complex *> data.data, data_info,
<double complex *> cD.data, output_info,
wavelet.w, axis,
common.COEF_DETAIL, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" %
retval)
elif data.dtype == np.complex64:
cA = np.zeros(output_shape, dtype=np.complex64)
with nogil:
retval = c_wt.float_complex_downcoef_axis(
<float complex *> data.data, data_info,
<float complex *> cA.data, output_info,
wavelet.w, axis,
common.COEF_APPROX, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" %
retval)
cD = np.zeros(output_shape, dtype=np.complex64)
with nogil:
retval = c_wt.float_complex_downcoef_axis(
<float complex *> data.data, data_info,
<float complex *> cD.data, output_info,
wavelet.w, axis,
common.COEF_DETAIL, common.MODE_PERIODIZATION,
i, common.SWT_TRANSFORM)
if retval:
raise RuntimeError(
"C wavelet transform failed with error code %d" %
retval)
if retval == -5:
raise TypeError("Array must be floating point, not {}"
.format(data.dtype))
if not trim_approx:
ret.append((cA, cD))
else:
ret.append(cD)
# previous approx coeffs are the data for the next level
data = cA
# update data_info to match the new data array
data_info.strides = <pywt_index_t *> data.strides
data_info.shape = <size_t *> data.shape
if trim_approx:
ret.append(cA)
ret.reverse()
return ret
|