1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
/* Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
* Copyright (c) 2012-2016 The PyWavelets Developers
* <https://github.com/PyWavelets/pywt>
* See COPYING for license details.
*/
#include "templating.h"
#ifndef REAL_TYPE
#error REAL_TYPE must be defined here.
#else
#ifndef TYPE
#error TYPE must be defined here.
#else
#include "convolution.h"
#if defined _MSC_VER
#define restrict __restrict
#elif defined __GNUC__
#define restrict __restrict__
#endif
/* This file contains several functions for computing the convolution of a
* signal with a filter. The general scheme is:
* output[o] = sum(filter[j] * input[i-j] for j = [0..F) and i = [0..N))
* where 'o', 'i' and 'j' may progress at different rates.
*
* Most of the code deals with different edge extension modes. Values are
* computed on-demand, in four steps:
* 1. Filter extends past signal on the left.
* 2. Filter completely contained within signal (no extension).
* 3. Filter extends past signal on both sides (only if F > N).
* 4. Filter extends past signal on the right.
*
* MODE_PERIODIZATION produces different output lengths to other modes, so is
* implemented as a separate function for each case.
*
* See 'common.h' for descriptions of the extension modes.
*/
int CAT(TYPE, _downsampling_convolution_periodization)(const TYPE * const restrict input, const size_t N,
const REAL_TYPE * const restrict filter, const size_t F,
TYPE * const restrict output, const size_t step,
const size_t fstep)
{
size_t i = F/2, o = 0;
const size_t padding = (step - (N % step)) % step;
for (; i < F && i < N; i += step, ++o) {
TYPE sum = 0;
size_t j;
size_t k_start = 0;
for (j = 0; j <= i; j += fstep)
sum += filter[j] * input[i-j];
if (fstep > 1)
k_start = j - (i + 1);
while (j < F){
size_t k;
for (k = k_start; k < padding && j < F; k += fstep, j += fstep)
sum += filter[j] * input[N-1];
for (k = k_start; k < N && j < F; k += fstep, j += fstep)
sum += filter[j] * input[N-1-k];
}
output[o] = sum;
}
for(; i < N; i+=step, ++o){
TYPE sum = 0;
size_t j;
for(j = 0; j < F; j += fstep)
sum += input[i-j]*filter[j];
output[o] = sum;
}
for (; i < F && i < N + F/2; i += step, ++o) {
TYPE sum = 0;
size_t j = 0;
size_t k_start = 0;
while (i-j >= N){
size_t k;
// for simplicity, not using fstep here
for (k = 0; k < padding && i-j >= N; ++k, ++j)
sum += filter[i-N-j] * input[N-1];
for (k = 0; k < N && i-j >= N; ++k, ++j)
sum += filter[i-N-j] * input[k];
}
if (fstep > 1)
j += (fstep - j % fstep) % fstep; // move to next non-zero entry
for (; j <= i; j += fstep)
sum += filter[j] * input[i-j];
if (fstep > 1)
k_start = j - (i + 1);
while (j < F){
size_t k;
for (k = k_start; k < padding && j < F; k += fstep, j += fstep)
sum += filter[j] * input[N-1];
for (k = k_start; k < N && j < F; k += fstep, j += fstep)
sum += filter[j] * input[N-1-k];
}
output[o] = sum;
}
for(; i < N + F/2; i += step, ++o){
TYPE sum = 0;
size_t j = 0;
while (i-j >= N){
// for simplicity, not using fstep here
size_t k;
for (k = 0; k < padding && i-j >= N; ++k, ++j)
sum += filter[i-N-j] * input[N-1];
for (k = 0; k < N && i-j >= N; ++k, ++j)
sum += filter[i-N-j] * input[k];
}
if (fstep > 1)
j += (fstep - j % fstep) % fstep; // move to next non-zero entry
for (; j < F; j += fstep)
sum += filter[j] * input[i-j];
output[o] = sum;
}
return 0;
}
int CAT(TYPE, _downsampling_convolution)(const TYPE * const restrict input, const size_t N,
const REAL_TYPE * const restrict filter, const size_t F,
TYPE * const restrict output,
const size_t step, MODE mode)
{
/* This convolution performs efficient downsampling by computing every
* step'th element of normal convolution (currently tested only for step=1
* and step=2).
*/
size_t i = step - 1, o = 0;
if(mode == MODE_PERIODIZATION)
return CAT(TYPE, _downsampling_convolution_periodization)(input, N, filter, F, output, step, 1);
if (mode == MODE_SMOOTH && N < 2)
mode = MODE_CONSTANT_EDGE;
// left boundary overhang
for(; i < F && i < N; i+=step, ++o){
TYPE sum = 0;
size_t j;
for(j = 0; j <= i; ++j)
sum += filter[j]*input[i-j];
switch(mode) {
case MODE_SYMMETRIC:
while (j < F){
size_t k;
for(k = 0; k < N && j < F; ++j, ++k)
sum += filter[j]*input[k];
for(k = 0; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_ANTISYMMETRIC:
// half-sample anti-symmetric
while (j < F){
size_t k;
for(k = 0; k < N && j < F; ++j, ++k)
sum -= filter[j]*input[k];
for(k = 0; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_REFLECT:
while (j < F){
size_t k;
for(k = 1; k < N && j < F; ++j, ++k)
sum += filter[j]*input[k];
for(k = 1; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_ANTIREFLECT:{
// whole-sample anti-symmetric
size_t k;
TYPE le = input[0]; // current left edge value
TYPE tmp = 0;
while (j < F) {
for(k = 1; k < N && j < F; ++j, ++k){
tmp = le - (input[k] - input[0]);
sum += filter[j]*tmp;
}
le = tmp;
for(k = 1; k < N && j < F; ++j, ++k){
tmp = le + (input[N-1-k] - input[N-1]);
sum += filter[j]*tmp;
}
le = tmp;
}
break;
}
case MODE_CONSTANT_EDGE:
for(; j < F; ++j)
sum += filter[j]*input[0];
break;
case MODE_SMOOTH:{
size_t k;
for(k = 1; j < F; ++j, ++k)
sum += filter[j]*(input[0] + k * (input[0] - input[1]));
break;
}
case MODE_PERIODIC:
while (j < F){
size_t k;
for(k = 0; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_ZEROPAD:
default:
break;
}
output[o] = sum;
}
// center (if input equal or wider than filter: N >= F)
for(; i < N; i+=step, ++o){
TYPE sum = 0;
size_t j;
for(j = 0; j < F; ++j)
sum += input[i-j]*filter[j];
output[o] = sum;
}
// center (if filter is wider than input: F > N)
for(; i < F; i+=step, ++o){
TYPE sum = 0;
size_t j = 0;
switch(mode) {
case MODE_SYMMETRIC:
// Included from original: TODO: j < F-_offset
/* Iterate over filter in reverse to process elements away from
* data. This gives a known first input element to process (N-1)
*/
while (i - j >= N){
size_t k;
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[N-1-k];
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_ANTISYMMETRIC:
// half-sample anti-symmetric
while (i - j >= N){
size_t k;
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum -= filter[i-N-j]*input[N-1-k];
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_REFLECT:
while (i - j >= N){
size_t k;
for(k = 1; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[N-1-k];
for(k = 1; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_ANTIREFLECT:{
// whole-sample anti-symmetric
size_t k;
TYPE re = input[N-1]; // current right edge value
TYPE tmp = 0;
while (i - j >= N) {
for(k = 1; k < N && i-j >= N; ++j, ++k){
tmp = re - (input[N-1-k] - input[N-1]);
sum += filter[i-N-j]*tmp;
}
re = tmp;
for(k = 1; k < N && i-j >= N; ++j, ++k){
tmp = re + (input[k] - input[0]);
sum += filter[i-N-j]*tmp;
}
re = tmp;
}
break;
}
case MODE_CONSTANT_EDGE:
for(; i-j >= N; ++j)
sum += filter[j]*input[N-1];
break;
case MODE_SMOOTH:{
size_t k;
for(k = i - N + 1; i-j >= N; ++j, --k)
sum += filter[j]*(input[N-1] + k * (input[N-1] - input[N-2]));
break;
}
case MODE_PERIODIC:
while (i-j >= N){
size_t k;
for (k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_ZEROPAD:
default:
j = i - N + 1;
break;
}
for(; j <= i; ++j)
sum += filter[j]*input[i-j];
switch(mode) {
case MODE_SYMMETRIC:
while (j < F){
size_t k;
for(k = 0; k < N && j < F; ++j, ++k)
sum += filter[j]*input[k];
for(k = 0; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_ANTISYMMETRIC:
// half-sample anti-symmetric
while (j < F){
size_t k;
for(k = 0; k < N && j < F; ++j, ++k)
sum -= filter[j]*input[k];
for(k = 0; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_REFLECT:
while (j < F){
size_t k;
for(k = 1; k < N && j < F; ++j, ++k)
sum += filter[j]*input[k];
for(k = 1; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_ANTIREFLECT:{
// whole-sample anti-symmetric
size_t k;
TYPE le = input[0]; // current left edge value
TYPE tmp = 0;
while (j < F) {
for(k = 1; k < N && j < F; ++j, ++k){
tmp = le - (input[k] - input[0]);
sum += filter[j]*tmp;
}
le = tmp;
for(k = 1; k < N && j < F; ++j, ++k){
tmp = le + (input[N-1-k] - input[N-1]);
sum += filter[j]*tmp;
}
le = tmp;
}
break;
}
case MODE_CONSTANT_EDGE:
for(; j < F; ++j)
sum += filter[j]*input[0];
break;
case MODE_SMOOTH:{
size_t k;
for(k = 1; j < F; ++j, ++k)
sum += filter[j]*(input[0] + k * (input[0] - input[1]));
break;
}
case MODE_PERIODIC:
while (j < F){
size_t k;
for(k = 0; k < N && j < F; ++k, ++j)
sum += filter[j]*input[N-1-k];
}
break;
case MODE_ZEROPAD:
default:
break;
}
output[o] = sum;
}
// right boundary overhang
for(; i < N+F-1; i += step, ++o){
TYPE sum = 0;
size_t j = 0;
switch(mode) {
case MODE_SYMMETRIC:
// Included from original: TODO: j < F-_offset
while (i - j >= N){
size_t k;
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[N-1-k];
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_ANTISYMMETRIC:
// half-sample anti-symmetric
while (i - j >= N){
size_t k;
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum -= filter[i-N-j]*input[N-1-k];
for(k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_REFLECT:
while (i - j >= N){
size_t k;
for(k = 1; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[N-1-k];
for(k = 1; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_ANTIREFLECT:{
// whole-sample anti-symmetric
size_t k;
TYPE re = input[N-1]; //current right edge value
TYPE tmp = 0;
while (i - j >= N) {
//first reflection
for(k = 1; k < N && i-j >= N; ++j, ++k){
tmp = re - (input[N-1-k] - input[N-1]);
sum += filter[i-N-j]*tmp;
}
re = tmp;
//second reflection
for(k = 1; k < N && i-j >= N; ++j, ++k){
tmp = re + (input[k] - input[0]);
sum += filter[i-N-j]*tmp;
}
re = tmp;
}
break;
}
case MODE_CONSTANT_EDGE:
for(; i-j >= N; ++j)
sum += filter[j]*input[N-1];
break;
case MODE_SMOOTH:{
size_t k;
for(k = i - N + 1; i-j >= N; ++j, --k)
sum += filter[j]*(input[N-1] + k * (input[N-1] - input[N-2]));
break;
}
case MODE_PERIODIC:
while (i-j >= N){
size_t k;
for (k = 0; k < N && i-j >= N; ++j, ++k)
sum += filter[i-N-j]*input[k];
}
break;
case MODE_ZEROPAD:
default:
j = i - N + 1;
break;
}
for(; j < F; ++j)
sum += filter[j]*input[i-j];
output[o] = sum;
}
return 0;
}
int CAT(TYPE, _upsampling_convolution_full)(const TYPE * const restrict input, const size_t N,
const REAL_TYPE * const restrict filter, const size_t F,
TYPE * const restrict output, const size_t O)
{
/* Performs a zero-padded convolution, using each input element for two
* consecutive filter elements. This simulates an upsampled input.
*
* In contrast to downsampling_convolution, this adds to the output. This
* allows multiple runs with different inputs and the same output to be used
* for idwt.
*/
// If check omitted, this function would be a no-op for F<2
size_t i = 0, o = 0;
if(F<2)
return -1;
if(F%2)
return -3;
for(; i < N && i < F/2; ++i, o += 2){
size_t j;
for(j = 0; j <= i; ++j){
output[o] += filter[j*2] * input[i-j];
output[o+1] += filter[j*2+1] * input[i-j];
}
}
for(; i < N; ++i, o += 2){
size_t j;
for(j = 0; j < F/2; ++j){
output[o] += filter[j*2] * input[i-j];
output[o+1] += filter[j*2+1] * input[i-j];
}
}
for(; i < F/2; ++i, o += 2){
size_t j;
for(j = i-(N-1); j <= i; ++j){
output[o] += filter[j*2] * input[i-j];
output[o+1] += filter[j*2+1] * input[i-j];
}
}
for(; i < N+F/2; ++i, o += 2){
size_t j;
for(j = i-(N-1); j < F/2; ++j){
output[o] += filter[j*2] * input[i-j];
output[o+1] += filter[j*2+1] * input[i-j];
}
}
return 0;
}
static int CAT(TYPE, _upsampling_convolution_valid_sf_periodization)(const TYPE * const restrict input, const size_t N,
const REAL_TYPE * const restrict filter, const size_t F,
TYPE * const restrict output, const size_t O)
{
// TODO? Allow for non-2 step
size_t const start = F/4;
size_t i = start;
size_t const end = N + start - (((F/2)%2) ? 0 : 1);
size_t o = 0;
if(F%2) return -3; /* Filter must have even-length. */
if ((F/2)%2 == 0){
// Shift output one element right. This is necessary for perfect reconstruction.
// i = N-1; even element goes to output[O-1], odd element goes to output[0]
size_t j = 0;
while(j <= start-1){
size_t k;
for (k = 0; k < N && j <= start-1; ++k, ++j){
output[2*N-1] += filter[2*(start-1-j)] * input[k];
output[0] += filter[2*(start-1-j)+1] * input[k];
}
}
for (; j <= N+start-1 && j < F/2; ++j){
output[2*N-1] += filter[2*j] * input[N+start-1-j];
output[0] += filter[2*j+1] * input[N+start-1-j];
}
while (j < F / 2){
size_t k;
for (k = 0; k < N && j < F/2; ++k, ++j){
output[2*N-1] += filter[2*j] * input[N-1-k];
output[0] += filter[2*j+1] * input[N-1-k];
}
}
o += 1;
}
for (; i < F/2 && i < N; ++i, o += 2){
size_t j = 0;
for(; j <= i; ++j){
output[o] += filter[2*j] * input[i-j];
output[o+1] += filter[2*j+1] * input[i-j];
}
while (j < F/2){
size_t k;
for(k = 0; k < N && j < F/2; ++k, ++j){
output[o] += filter[2*j] * input[N-1-k];
output[o+1] += filter[2*j+1] * input[N-1-k];
}
}
}
for (; i < N; ++i, o += 2){
size_t j;
for(j = 0; j < F/2; ++j){
output[o] += filter[2*j] * input[i-j];
output[o+1] += filter[2*j+1] * input[i-j];
}
}
for (; i < F/2 && i < end; ++i, o += 2){
size_t j = 0;
while(i-j >= N){
size_t k;
for (k = 0; k < N && i-j >= N; ++k, ++j){
output[o] += filter[2*(i-N-j)] * input[k];
output[o+1] += filter[2*(i-N-j)+1] * input[k];
}
}
for (; j <= i && j < F/2; ++j){
output[o] += filter[2*j] * input[i-j];
output[o+1] += filter[2*j+1] * input[i-j];
}
while (j < F / 2){
size_t k;
for (k = 0; k < N && j < F/2; ++k, ++j){
output[o] += filter[2*j] * input[N-1-k];
output[o+1] += filter[2*j+1] * input[N-1-k];
}
}
}
for (; i < end; ++i, o += 2){
size_t j = 0;
while(i-j >= N){
size_t k;
for (k = 0; k < N && i-j >= N; ++k, ++j){
output[o] += filter[2*(i-N-j)] * input[k];
output[o+1] += filter[2*(i-N-j)+1] * input[k];
}
}
for (; j <= i && j < F/2; ++j){
output[o] += filter[2*j] * input[i-j];
output[o+1] += filter[2*j+1] * input[i-j];
}
}
return 0;
}
/*
* performs IDWT for all modes
*
* The upsampling is performed by splitting filters to even and odd elements
* and performing 2 convolutions. After refactoring the PERIODIZATION mode
* case to separate function this looks much clearer now.
*/
int CAT(TYPE, _upsampling_convolution_valid_sf)(const TYPE * const restrict input, const size_t N,
const REAL_TYPE * const restrict filter, const size_t F,
TYPE * const restrict output, const size_t O,
MODE mode)
{
// TODO: Allow non-2 step?
if(mode == MODE_PERIODIZATION)
return CAT(TYPE, _upsampling_convolution_valid_sf_periodization)(input, N, filter, F, output, O);
if((F%2) || (N < F/2))
return -1;
// Perform only stage 2 - all elements in the filter overlap an input element.
{
size_t o, i;
for(o = 0, i = F/2 - 1; i < N; ++i, o += 2){
TYPE sum_even = 0;
TYPE sum_odd = 0;
size_t j;
for(j = 0; j < F/2; ++j){
sum_even += filter[j*2] * input[i-j];
sum_odd += filter[j*2+1] * input[i-j];
}
output[o] += sum_even;
output[o+1] += sum_odd;
}
}
return 0;
}
/* -> swt - todo */
int CAT(TYPE, _upsampled_filter_convolution)(const TYPE * const restrict input, const size_t N,
const REAL_TYPE * const restrict filter, const size_t F,
TYPE * const restrict output,
const size_t step, MODE mode)
{
return -1;
}
#undef restrict
#endif /* REAL_TYPE */
#endif /* TYPE */
|