1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
/* Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
* Copyright (c) 2012-2016 The PyWavelets Developers
* <https://github.com/PyWavelets/pywt>
* See COPYING for license details.
*/
#include "templating.h"
#ifndef TYPE
#error TYPE must be defined here.
#else
#ifndef REAL_TYPE
#error REAL_TYPE must be defined here.
#else
#include "wt.h"
#if defined _MSC_VER
#define restrict __restrict
#elif defined __GNUC__
#define restrict __restrict__
#endif
/* Decomposition of input with lowpass filter */
int CAT(TYPE, _downcoef_axis)(const TYPE * const restrict input, const ArrayInfo input_info,
TYPE * const restrict output, const ArrayInfo output_info,
const DiscreteWavelet * const restrict wavelet, const size_t axis,
const Coefficient coef, const MODE dwt_mode,
const size_t swt_level,
const DiscreteTransformType transform){
size_t i;
size_t num_loops = 1;
TYPE * temp_input = NULL, * temp_output = NULL;
// These are boolean values, but MSVC does not have <stdbool.h>
int make_temp_input, make_temp_output;
if (input_info.ndim != output_info.ndim)
return 1;
if (axis >= input_info.ndim)
return 2;
for (i = 0; i < input_info.ndim; ++i){
if (i == axis){
switch (transform) {
case DWT_TRANSFORM:
if (dwt_buffer_length(input_info.shape[i], wavelet->dec_len,
dwt_mode) != output_info.shape[i])
return 3;
break;
case SWT_TRANSFORM:
if (swt_buffer_length(input_info.shape[i])
!= output_info.shape[i])
return 4;
break;
}
} else {
if (input_info.shape[i] != output_info.shape[i])
return 5;
}
}
make_temp_input = input_info.strides[axis] != sizeof(TYPE);
make_temp_output = output_info.strides[axis] != sizeof(TYPE);
if (make_temp_input)
if ((temp_input = malloc(input_info.shape[axis] * sizeof(TYPE))) == NULL)
goto cleanup;
if (make_temp_output)
if ((temp_output = malloc(output_info.shape[axis] * sizeof(TYPE))) == NULL)
goto cleanup;
for (i = 0; i < output_info.ndim; ++i){
if (i != axis)
num_loops *= output_info.shape[i];
}
for (i = 0; i < num_loops; ++i){
size_t j;
size_t input_offset = 0, output_offset = 0;
const TYPE * input_row;
TYPE * output_row;
// Calculate offset into linear buffer
{
size_t reduced_idx = i;
for (j = 0; j < output_info.ndim; ++j){
size_t j_rev = output_info.ndim - 1 - j;
if (j_rev != axis){
size_t axis_idx = reduced_idx % output_info.shape[j_rev];
reduced_idx /= output_info.shape[j_rev];
input_offset += (axis_idx * input_info.strides[j_rev]);
output_offset += (axis_idx * output_info.strides[j_rev]);
}
}
}
// Copy to temporary input if necessary
if (make_temp_input)
for (j = 0; j < input_info.shape[axis]; ++j)
// Offsets are byte offsets, to need to cast to char and back
temp_input[j] = *(TYPE *)(((char *) input) + input_offset
+ j * input_info.strides[axis]);
// Select temporary or direct output and input
input_row = make_temp_input ? temp_input
: (const TYPE *)((const char *) input + input_offset);
output_row = make_temp_output ? temp_output
: (TYPE *)((char *) output + output_offset);
switch (transform) {
case DWT_TRANSFORM:
// Apply along axis
switch (coef){
case COEF_APPROX:
CAT(TYPE, _dec_a)(input_row, input_info.shape[axis],
wavelet,
output_row, output_info.shape[axis],
dwt_mode);
break;
case COEF_DETAIL:
CAT(TYPE, _dec_d)(input_row, input_info.shape[axis],
wavelet,
output_row, output_info.shape[axis],
dwt_mode);
break;
}
break;
case SWT_TRANSFORM:
// Apply along axis
switch (coef){
case COEF_APPROX:
CAT(TYPE, _swt_a)(input_row, input_info.shape[axis],
wavelet,
output_row, output_info.shape[axis],
swt_level);
break;
case COEF_DETAIL:
CAT(TYPE, _swt_d)(input_row, input_info.shape[axis],
wavelet,
output_row, output_info.shape[axis],
swt_level);
break;
}
break;
}
// Copy from temporary output if necessary
if (make_temp_output)
for (j = 0; j < output_info.shape[axis]; ++j)
// Offsets are byte offsets, to need to cast to char and back
*(TYPE *)((char *) output + output_offset
+ j * output_info.strides[axis]) = output_row[j];
}
free(temp_input);
free(temp_output);
return 0;
cleanup:
free(temp_input);
free(temp_output);
return 6;
}
int CAT(TYPE, _idwt_axis)(const TYPE * const restrict coefs_a, const ArrayInfo * const a_info,
const TYPE * const restrict coefs_d, const ArrayInfo * const d_info,
TYPE * const restrict output, const ArrayInfo output_info,
const DiscreteWavelet * const restrict wavelet,
const size_t axis, const MODE mode){
size_t i;
size_t num_loops = 1;
TYPE * temp_coefs_a = NULL, * temp_coefs_d = NULL, * temp_output = NULL;
// These are boolean values, but MSVC does not have <stdbool.h>
int make_temp_coefs_a, make_temp_coefs_d, make_temp_output;
int have_a = ((coefs_a != NULL) && (a_info != NULL));
int have_d = ((coefs_d != NULL) && (d_info != NULL));
if (!have_a && !have_d)
return 3;
if ((have_a && (a_info->ndim != output_info.ndim)) ||
(have_d && (d_info->ndim != output_info.ndim)))
return 1;
if (axis >= output_info.ndim)
return 1;
for (i = 0; i < output_info.ndim; ++i){
if (i == axis){
size_t input_shape;
if (have_a && have_d &&
(d_info->shape[i] != a_info->shape[i]))
return 1;
input_shape = have_a ? a_info->shape[i] : d_info->shape[i];
/* TODO: reconstruction_buffer_length should take a & d shapes
* - for odd output_len, d_len == (a_len - 1)
*/
if (idwt_buffer_length(input_shape, wavelet->rec_len, mode)
!= output_info.shape[i])
return 1;
} else {
if ((have_a && (a_info->shape[i] != output_info.shape[i])) ||
(have_d && (d_info->shape[i] != output_info.shape[i])))
return 1;
}
}
make_temp_coefs_a = have_a && a_info->strides[axis] != sizeof(TYPE);
make_temp_coefs_d = have_d && d_info->strides[axis] != sizeof(TYPE);
make_temp_output = output_info.strides[axis] != sizeof(TYPE);
if (make_temp_coefs_a)
if ((temp_coefs_a = malloc(a_info->shape[axis] * sizeof(TYPE))) == NULL)
goto cleanup;
if (make_temp_coefs_d)
if ((temp_coefs_d = malloc(d_info->shape[axis] * sizeof(TYPE))) == NULL)
goto cleanup;
if (make_temp_output)
if ((temp_output = malloc(output_info.shape[axis] * sizeof(TYPE))) == NULL)
goto cleanup;
for (i = 0; i < output_info.ndim; ++i){
if (i != axis)
num_loops *= output_info.shape[i];
}
for (i = 0; i < num_loops; ++i){
size_t j;
size_t a_offset = 0, d_offset = 0, output_offset = 0;
TYPE * output_row;
// Calculate offset into linear buffer
{
size_t reduced_idx = i;
for (j = 0; j < output_info.ndim; ++j){
size_t j_rev = output_info.ndim - 1 - j;
if (j_rev != axis){
size_t axis_idx = reduced_idx % output_info.shape[j_rev];
reduced_idx /= output_info.shape[j_rev];
if (have_a)
a_offset += (axis_idx * a_info->strides[j_rev]);
if (have_d)
d_offset += (axis_idx * d_info->strides[j_rev]);
output_offset += (axis_idx * output_info.strides[j_rev]);
}
}
}
// Copy to temporary input if necessary
if (make_temp_coefs_a)
for (j = 0; j < a_info->shape[axis]; ++j)
// Offsets are byte offsets, to need to cast to char and back
temp_coefs_a[j] = *(TYPE *)((char *) coefs_a + a_offset
+ j * a_info->strides[axis]);
if (make_temp_coefs_d)
for (j = 0; j < d_info->shape[axis]; ++j)
// Offsets are byte offsets, to need to cast to char and back
temp_coefs_d[j] = *(TYPE *)((char *) coefs_d + d_offset
+ j * d_info->strides[axis]);
// Select temporary or direct output
output_row = make_temp_output ? temp_output
: (TYPE *)((char *) output + output_offset);
// upsampling_convolution adds to input, so zero
memset(output_row, 0, output_info.shape[axis] * sizeof(TYPE));
if (have_a){
// Pointer arithmetic on NULL is undefined
const TYPE * a_row = make_temp_coefs_a ? temp_coefs_a
: (const TYPE *)((const char *) coefs_a + a_offset);
CAT(TYPE, _upsampling_convolution_valid_sf)
(a_row, a_info->shape[axis],
wavelet->CAT(rec_lo_, REAL_TYPE), wavelet->rec_len,
output_row, output_info.shape[axis],
mode);
}
if (have_d){
// Pointer arithmetic on NULL is undefined
const TYPE * d_row = make_temp_coefs_d ? temp_coefs_d
: (const TYPE *)((const char *) coefs_d + d_offset);
CAT(TYPE, _upsampling_convolution_valid_sf)
(d_row, d_info->shape[axis],
wavelet->CAT(rec_hi_, REAL_TYPE), wavelet->rec_len,
output_row, output_info.shape[axis],
mode);
}
// Copy from temporary output if necessary
if (make_temp_output)
for (j = 0; j < output_info.shape[axis]; ++j)
// Offsets are byte offsets, to need to cast to char and back
*(TYPE *)((char *) output + output_offset
+ j * output_info.strides[axis]) = output_row[j];
}
free(temp_coefs_a);
free(temp_coefs_d);
free(temp_output);
return 0;
cleanup:
free(temp_coefs_a);
free(temp_coefs_d);
free(temp_output);
return 2;
}
int CAT(TYPE, _dec_a)(const TYPE * const restrict input, const size_t input_len,
const DiscreteWavelet * const restrict wavelet,
TYPE * const restrict output, const size_t output_len,
const MODE mode){
/* check output length */
if(output_len != dwt_buffer_length(input_len, wavelet->dec_len, mode)){
return -1;
}
return CAT(TYPE, _downsampling_convolution)(input, input_len,
wavelet->CAT(dec_lo_, REAL_TYPE),
wavelet->dec_len, output,
2, mode);
}
/* Decomposition of input with highpass filter */
int CAT(TYPE, _dec_d)(const TYPE * const restrict input, const size_t input_len,
const DiscreteWavelet * const restrict wavelet,
TYPE * const restrict output, const size_t output_len,
const MODE mode){
/* check output length */
if(output_len != dwt_buffer_length(input_len, wavelet->dec_len, mode))
return -1;
return CAT(TYPE, _downsampling_convolution)(input, input_len,
wavelet->CAT(dec_hi_, REAL_TYPE),
wavelet->dec_len, output,
2, mode);
}
/* Direct reconstruction with lowpass reconstruction filter */
int CAT(TYPE, _rec_a)(const TYPE * const restrict coeffs_a, const size_t coeffs_len,
const DiscreteWavelet * const restrict wavelet,
TYPE * const restrict output, const size_t output_len){
/* check output length */
if(output_len != reconstruction_buffer_length(coeffs_len, wavelet->rec_len))
return -1;
return CAT(TYPE, _upsampling_convolution_full)(coeffs_a, coeffs_len,
wavelet->CAT(rec_lo_, REAL_TYPE),
wavelet->rec_len, output,
output_len);
}
/* Direct reconstruction with highpass reconstruction filter */
int CAT(TYPE, _rec_d)(const TYPE * const restrict coeffs_d, const size_t coeffs_len,
const DiscreteWavelet * const restrict wavelet,
TYPE * const restrict output, const size_t output_len){
/* check for output length */
if(output_len != reconstruction_buffer_length(coeffs_len, wavelet->rec_len))
return -1;
return CAT(TYPE, _upsampling_convolution_full)(coeffs_d, coeffs_len,
wavelet->CAT(rec_hi_, REAL_TYPE),
wavelet->rec_len, output,
output_len);
}
/*
* IDWT reconstruction from approximation and detail coeffs, either of which may
* be NULL.
*
* Requires zero-filled output buffer.
*/
int CAT(TYPE, _idwt)(const TYPE * const restrict coeffs_a, const size_t coeffs_a_len,
const TYPE * const restrict coeffs_d, const size_t coeffs_d_len,
TYPE * const restrict output, const size_t output_len,
const DiscreteWavelet * const restrict wavelet, const MODE mode){
size_t input_len;
if(coeffs_a != NULL && coeffs_d != NULL){
if(coeffs_a_len != coeffs_d_len)
goto error;
input_len = coeffs_a_len;
} else if(coeffs_a != NULL){
input_len = coeffs_a_len;
} else if (coeffs_d != NULL){
input_len = coeffs_d_len;
} else {
goto error;
}
/* check output size */
if(output_len != idwt_buffer_length(input_len, wavelet->rec_len, mode))
goto error;
/*
* Set output to zero (this can be omitted if output array is already
* cleared) memset(output, 0, output_len * sizeof(TYPE));
*/
/* reconstruct approximation coeffs with lowpass reconstruction filter */
if(coeffs_a){
if(CAT(TYPE, _upsampling_convolution_valid_sf)(coeffs_a, input_len,
wavelet->CAT(rec_lo_, REAL_TYPE),
wavelet->rec_len, output,
output_len, mode) < 0){
goto error;
}
}
/*
* Add reconstruction of details coeffs performed with highpass
* reconstruction filter.
*/
if(coeffs_d){
if(CAT(TYPE, _upsampling_convolution_valid_sf)(coeffs_d, input_len,
wavelet->CAT(rec_hi_, REAL_TYPE),
wavelet->rec_len, output,
output_len, mode) < 0){
goto error;
}
}
return 0;
error:
return -1;
}
/* basic SWT step (TODO: optimize) */
int CAT(TYPE, _swt_)(const TYPE * const restrict input, pywt_index_t input_len,
const REAL_TYPE * const restrict filter, pywt_index_t filter_len,
TYPE * const restrict output, size_t output_len,
unsigned int level){
REAL_TYPE * e_filter;
pywt_index_t i, e_filter_len, fstep;
int ret;
if(level < 1)
return -1;
if(level > swt_max_level(input_len))
return -2;
if(output_len != swt_buffer_length(input_len))
return -1;
/* TODO: quick hack, optimize */
if(level > 1){
/* allocate filter first */
e_filter_len = filter_len << (level-1);
if ((e_filter = wtcalloc(e_filter_len, sizeof(TYPE))) == NULL)
goto cleanup;
if(e_filter == NULL)
return -1;
fstep = 1 << (level - 1); // spacing between non-zero filter entries
/* compute upsampled filter values */
for(i = 0; i < filter_len; ++i){
e_filter[i << (level-1)] = filter[i];
}
ret = CAT(TYPE, _downsampling_convolution_periodization)(input, input_len, e_filter,
e_filter_len, output, 1,
fstep);
wtfree(e_filter);
return ret;
} else {
return CAT(TYPE, _downsampling_convolution_periodization)(input, input_len, filter,
filter_len, output, 1,
1);
}
cleanup:
wtfree(e_filter);
return -3;
}
/*
* Approximation at specified level
* input - approximation coeffs from upper level or signal if level == 1
*/
int CAT(TYPE, _swt_a)(const TYPE * const restrict input, pywt_index_t input_len,
const DiscreteWavelet * const restrict wavelet,
TYPE * const restrict output, pywt_index_t output_len,
unsigned int level){
return CAT(TYPE, _swt_)(input, input_len, wavelet->CAT(dec_lo_, REAL_TYPE),
wavelet->dec_len, output, output_len, level);
}
/* Details at specified level
* input - approximation coeffs from upper level or signal if level == 1
*/
int CAT(TYPE, _swt_d)(const TYPE * const restrict input, pywt_index_t input_len,
const DiscreteWavelet * const restrict wavelet,
TYPE * const restrict output, pywt_index_t output_len,
unsigned int level){
return CAT(TYPE, _swt_)(input, input_len, wavelet->CAT(dec_hi_, REAL_TYPE),
wavelet->dec_len, output, output_len, level);
}
#endif /* REAL_TYPE */
#endif /* TYPE */
#undef restrict
|