File: _mra.py

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (427 lines) | stat: -rw-r--r-- 14,364 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from functools import partial, reduce

import numpy as np

from ._multilevel import (_prep_axes_wavedecn, wavedec, wavedec2, wavedecn,
                          waverec, waverec2, waverecn)
from ._swt import iswt, iswt2, iswtn, swt, swt2, swt_max_level, swtn
from ._utils import _modes_per_axis, _wavelets_per_axis

__all__ = ["mra", "mra2", "mran", "imra", "imra2", "imran"]


def mra(data, wavelet, level=None, axis=-1, transform='swt',
        mode='periodization'):
    """Forward 1D multiresolution analysis.

    It is a projection onto the wavelet subspaces.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string
        Wavelet to use
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the `dwt_max_level` function.
    axis: int, optional
        Axis over which to compute the DWT. If not given, the last axis is
        used. Currently only available when ``transform='dwt'``.
    transform : {'dwt', 'swt'}
        Whether to use the DWT or SWT for the transforms.
    mode : str, optional
        Signal extension mode, see `Modes` (default: 'symmetric'). This option
        is only used when transform='dwt'.

    Returns
    -------
    [cAn, {details_level_n}, ... {details_level_1}] : list
        For more information, see the detailed description in `wavedec`

    See Also
    --------
    imra, swt

    Notes
    -----
    This is sometimes referred to as an additive decomposition because the
    inverse transform (``imra``) is just the sum of the coefficient arrays
    [1]_. The decomposition using ``transform='dwt'`` corresponds to section
    2.2 while that using an undecimated transform (``transform='swt'``) is
    described in section 3.2 and appendix A.

    This transform does not share the variance partition property of ``swt``
    with `norm=True`. It does however, result in coefficients that are
    temporally aligned regardless of the symmetry of the wavelet used.

    The redundancy of this transform is ``(level + 1)``.

    References
    ----------
    .. [1] Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
        Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
        Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
        https://doi.org/10.2307/2965551

    """
    if transform == 'swt':
        if mode != 'periodization':
            raise ValueError(
                "transform swt only supports mode='periodization'")
        kwargs = dict(wavelet=wavelet, axis=axis, norm=True)
        forward = partial(swt, level=level, trim_approx=True, **kwargs)
        inverse = partial(iswt, **kwargs)
        is_swt = True
    elif transform == 'dwt':
        kwargs = dict(wavelet=wavelet, mode=mode, axis=axis)
        forward = partial(wavedec, level=level, **kwargs)
        inverse = partial(waverec, **kwargs)
        is_swt = False
    else:
        raise ValueError("unrecognized transform: {}".format(transform))

    wav_coeffs = forward(data)

    mra_coeffs = []
    nc = len(wav_coeffs)

    if is_swt:
        # replicate same zeros array to save memory
        z = np.zeros_like(wav_coeffs[0])
        tmp = [z, ] * nc
    else:
        # zero arrays have variable size in DWT case
        tmp = [np.zeros_like(c) for c in wav_coeffs]

    for j in range(nc):
        # tmp has arrays of zeros except for the jth entry
        tmp[j] = wav_coeffs[j]

        # reconstruct
        rec = inverse(tmp)
        if rec.shape != data.shape:
            # trim any excess coefficients
            rec = rec[tuple([slice(sz) for sz in data.shape])]
        mra_coeffs.append(rec)

        # restore zeros
        if is_swt:
            tmp[j] = z
        else:
            tmp[j] = np.zeros_like(tmp[j])
    return mra_coeffs


def imra(mra_coeffs):
    """Inverse 1D multiresolution analysis via summation.

    Parameters
    ----------
    mra_coeffs : list of ndarray
        Multiresolution analysis coefficients as returned by `mra`.

    Returns
    -------
    rec : ndarray
        The reconstructed signal.

    See Also
    --------
    mra

    References
    ----------
    .. [1] Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
        Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
        Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
        https://doi.org/10.2307/2965551
    """
    return reduce(lambda x, y: x + y, mra_coeffs)


def mra2(data, wavelet, level=None, axes=(-2, -1), transform='swt2',
         mode='periodization'):
    """Forward 2D multiresolution analysis.

    It is a projection onto wavelet subspaces.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string, or 2-tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in `axes`.
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the `dwt_max_level` function.
    axes : 2-tuple of ints, optional
        Axes over which to compute the DWT. Repeated elements are not allowed.
        Currently only available when ``transform='dwt2'``.
    transform : {'dwt2', 'swt2'}
        Whether to use the DWT or SWT for the transforms.
    mode : str or 2-tuple of str, optional
        Signal extension mode, see `Modes` (default: 'symmetric'). This option
        is only used when transform='dwt2'.

    Returns
    -------
    coeffs : list
        For more information, see the detailed description in `wavedec2`

    Notes
    -----
    This is sometimes referred to as an additive decomposition because the
    inverse transform (``imra2``) is just the sum of the coefficient arrays
    [1]_. The decomposition using ``transform='dwt'`` corresponds to section
    2.2 while that using an undecimated transform (``transform='swt'``) is
    described in section 3.2 and appendix A.

    This transform does not share the variance partition property of ``swt2``
    with `norm=True`. It does however, result in coefficients that are
    temporally aligned regardless of the symmetry of the wavelet used.

    The redundancy of this transform is ``3 * level + 1``.

    See Also
    --------
    imra2, swt2

    References
    ----------
    .. [1] Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
        Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
        Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
        https://doi.org/10.2307/2965551
    """
    if transform == 'swt2':
        if mode != 'periodization':
            raise ValueError(
                "transform swt only supports mode='periodization'")
        if level is None:
            level = min(swt_max_level(s) for s in data.shape)
        kwargs = dict(wavelet=wavelet, axes=axes, norm=True)
        forward = partial(swt2, level=level, trim_approx=True, **kwargs)
        inverse = partial(iswt2, **kwargs)
    elif transform == 'dwt2':
        kwargs = dict(wavelet=wavelet, mode=mode, axes=axes)
        forward = partial(wavedec2, level=level, **kwargs)
        inverse = partial(waverec2, **kwargs)
    else:
        raise ValueError("unrecognized transform: {}".format(transform))

    wav_coeffs = forward(data)

    mra_coeffs = []
    nc = len(wav_coeffs)
    z = np.zeros_like(wav_coeffs[0])
    tmp = [z]
    for j in range(1, nc):
        tmp.append([np.zeros_like(c) for c in wav_coeffs[j]])

    # tmp has arrays of zeros except for the jth entry
    tmp[0] = wav_coeffs[0]
    # reconstruct
    rec = inverse(tmp)
    if rec.shape != data.shape:
        # trim any excess coefficients
        rec = rec[tuple([slice(sz) for sz in data.shape])]
    mra_coeffs.append(rec)
    # restore zeros
    tmp[0] = z

    for j in range(1, nc):
        dcoeffs = []
        for n in range(3):
            # tmp has arrays of zeros except for the jth entry
            z = tmp[j][n]
            tmp[j][n] = wav_coeffs[j][n]
            # reconstruct
            rec = inverse(tmp)
            if rec.shape != data.shape:
                # trim any excess coefficients
                rec = rec[tuple([slice(sz) for sz in data.shape])]
            dcoeffs.append(rec)
            # restore zeros
            tmp[j][n] = z
        mra_coeffs.append(tuple(dcoeffs))
    return mra_coeffs


def imra2(mra_coeffs):
    """Inverse 2D multiresolution analysis via summation.

    Parameters
    ----------
    mra_coeffs : list
        Multiresolution analysis coefficients as returned by `mra2`.

    Returns
    -------
    rec : ndarray
        The reconstructed signal.

    See Also
    --------
    mra2

    References
    ----------
    .. [1] Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
        Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
        Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
        https://doi.org/10.2307/2965551
    """
    rec = mra_coeffs[0]
    for j in range(1, len(mra_coeffs)):
        for n in range(3):
            rec += mra_coeffs[j][n]
    return rec


def mran(data, wavelet, level=None, axes=None, transform='swtn',
         mode='periodization'):
    """Forward nD multiresolution analysis.

    It is a projection onto the wavelet subspaces.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string, or tuple of wavelets
        Wavelet to use. This can also be a tuple containing a wavelet to
        apply along each axis in `axes`.
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the `dwt_max_level` function.
    axes : tuple of ints, optional
        Axes over which to compute the DWT. Repeated elements are not allowed.
    transform : {'dwtn', 'swtn'}
        Whether to use the DWT or SWT for the transforms.
    mode : str or tuple of str, optional
        Signal extension mode, see `Modes` (default: 'symmetric'). This option
        is only used when transform='dwtn'.

    Returns
    -------
    coeffs : list
        For more information, see the detailed description in `wavedecn`.

    See Also
    --------
    imran, swtn

    Notes
    -----
    This is sometimes referred to as an additive decomposition because the
    inverse transform (``imran``) is just the sum of the coefficient arrays
    [1]_. The decomposition using ``transform='dwt'`` corresponds to section
    2.2 while that using an undecimated transform (``transform='swt'``) is
    described in section 3.2 and appendix A.

    This transform does not share the variance partition property of ``swtn``
    with `norm=True`. It does however, result in coefficients that are
    temporally aligned regardless of the symmetry of the wavelet used.

    The redundancy of this transform is ``(2**n - 1) * level + 1`` where ``n``
    corresponds to the number of axes transformed.

    References
    ----------
    .. [1] Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
        Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
        Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
        https://doi.org/10.2307/2965551
    """
    axes, axes_shapes, ndim_transform = _prep_axes_wavedecn(data.shape, axes)
    wavelets = _wavelets_per_axis(wavelet, axes)

    if transform == 'swtn':
        if mode != 'periodization':
            raise ValueError(
                "transform swt only supports mode='periodization'")
        if level is None:
            level = min(swt_max_level(s) for s in data.shape)
        kwargs = dict(wavelet=wavelets, axes=axes, norm=True)
        forward = partial(swtn, level=level, trim_approx=True, **kwargs)
        inverse = partial(iswtn, **kwargs)
    elif transform == 'dwtn':
        modes = _modes_per_axis(mode, axes)
        kwargs = dict(wavelet=wavelets, mode=modes, axes=axes)
        forward = partial(wavedecn, level=level, **kwargs)
        inverse = partial(waverecn, **kwargs)
    else:
        raise ValueError("unrecognized transform: {}".format(transform))

    wav_coeffs = forward(data)

    mra_coeffs = []
    nc = len(wav_coeffs)
    z = np.zeros_like(wav_coeffs[0])
    tmp = [z]
    for j in range(1, nc):
        tmp.append({k: np.zeros_like(v) for k, v in wav_coeffs[j].items()})

    # tmp has arrays of zeros except for the jth entry
    tmp[0] = wav_coeffs[0]
    # reconstruct
    rec = inverse(tmp)
    if rec.shape != data.shape:
        # trim any excess coefficients
        rec = rec[tuple([slice(sz) for sz in data.shape])]
    mra_coeffs.append(rec)
    # restore zeros
    tmp[0] = z

    for j in range(1, nc):
        dcoeffs = {}
        dkeys = list(wav_coeffs[j].keys())
        for k in dkeys:
            # tmp has arrays of zeros except for the jth entry
            z = tmp[j][k]
            tmp[j][k] = wav_coeffs[j][k]
            # tmp[j]['a' * len(k)] = z
            # reconstruct
            rec = inverse(tmp)
            if rec.shape != data.shape:
                # trim any excess coefficients
                rec = rec[tuple([slice(sz) for sz in data.shape])]
            dcoeffs[k] = rec
            # restore zeros
            tmp[j][k] = z
            # tmp[j].pop('a' * len(k))
        mra_coeffs.append(dcoeffs)
    return mra_coeffs


def imran(mra_coeffs):
    """Inverse nD multiresolution analysis via summation.

    Parameters
    ----------
    mra_coeffs : list
        Multiresolution analysis coefficients as returned by `mra2`.

    Returns
    -------
    rec : ndarray
        The reconstructed signal.

    See Also
    --------
    mran

    References
    ----------
    .. [1] Donald B. Percival and Harold O. Mofjeld. Analysis of Subtidal
        Coastal Sea Level Fluctuations Using Wavelets. Journal of the American
        Statistical Association Vol. 92, No. 439 (Sep., 1997), pp. 868-880.
        https://doi.org/10.2307/2965551
    """
    rec = mra_coeffs[0]
    for j in range(1, len(mra_coeffs)):
        for k, v in mra_coeffs[j].items():
            rec += v
    return rec