File: _multilevel.py

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (1561 lines) | stat: -rw-r--r-- 57,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# Copyright (c) 2012-2018 The PyWavelets Developers
#                         <https://github.com/PyWavelets/pywt>
# See COPYING for license details.

"""
Multilevel 1D and 2D Discrete Wavelet Transform
and Inverse Discrete Wavelet Transform.
"""

from __future__ import division, print_function, absolute_import

import numbers
import warnings
from itertools import product
from copy import copy
import numpy as np

from ._extensions._pywt import Wavelet, Modes
from ._extensions._dwt import dwt_max_level
from ._dwt import dwt, idwt, dwt_coeff_len
from ._multidim import dwt2, idwt2, dwtn, idwtn, _fix_coeffs
from ._utils import _as_wavelet, _wavelets_per_axis, _modes_per_axis

__all__ = ['wavedec', 'waverec', 'wavedec2', 'waverec2', 'wavedecn',
           'waverecn', 'coeffs_to_array', 'array_to_coeffs', 'ravel_coeffs',
           'unravel_coeffs', 'dwtn_max_level', 'wavedecn_size',
           'wavedecn_shapes', 'fswavedecn', 'fswaverecn', 'FswavedecnResult']


def _check_level(sizes, dec_lens, level):
    if np.isscalar(sizes):
        sizes = (sizes, )
    if np.isscalar(dec_lens):
        dec_lens = (dec_lens, )
    max_level = np.min([dwt_max_level(s, d) for s, d in zip(sizes, dec_lens)])
    if level is None:
        level = max_level
    elif level < 0:
        raise ValueError(
            "Level value of %d is too low . Minimum level is 0." % level)
    elif level > max_level:
        warnings.warn(
            ("Level value of {} is too high: all coefficients will experience "
             "boundary effects.").format(level))
    return level


def wavedec(data, wavelet, mode='symmetric', level=None, axis=-1):
    """
    Multilevel 1D Discrete Wavelet Transform of data.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`.
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axis: int, optional
        Axis over which to compute the DWT. If not given, the
        last axis is used.

    Returns
    -------
    [cA_n, cD_n, cD_n-1, ..., cD2, cD1] : list
        Ordered list of coefficients arrays
        where ``n`` denotes the level of decomposition. The first element
        (``cA_n``) of the result is approximation coefficients array and the
        following elements (``cD_n`` - ``cD_1``) are details coefficients
        arrays.

    Examples
    --------
    >>> from pywt import wavedec
    >>> coeffs = wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
    >>> cA2, cD2, cD1 = coeffs
    >>> cD1
    array([-0.70710678, -0.70710678, -0.70710678, -0.70710678])
    >>> cD2
    array([-2., -2.])
    >>> cA2
    array([  5.,  13.])

    """
    data = np.asarray(data)

    wavelet = _as_wavelet(wavelet)
    try:
        axes_shape = data.shape[axis]
    except IndexError:
        raise np.AxisError("Axis greater than data dimensions")
    level = _check_level(axes_shape, wavelet.dec_len, level)

    coeffs_list = []

    a = data
    for i in range(level):
        a, d = dwt(a, wavelet, mode, axis)
        coeffs_list.append(d)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec(coeffs, wavelet, mode='symmetric', axis=-1):
    """
    Multilevel 1D Inverse Discrete Wavelet Transform.

    Parameters
    ----------
    coeffs : array_like
        Coefficients list [cAn, cDn, cDn-1, ..., cD2, cD1]
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`.
    axis: int, optional
        Axis over which to compute the inverse DWT. If not given, the
        last axis is used.

    Notes
    -----
    It may sometimes be desired to run ``waverec`` with some sets of
    coefficients omitted.  This can best be done by setting the corresponding
    arrays to zero arrays of matching shape and dtype.  Explicitly removing
    list entries or setting them to None is not supported.

    Specifically, to ignore detail coefficients at level 2, one could do::

        coeffs[-2] == np.zeros_like(coeffs[-2])

    Examples
    --------
    >>> import pywt
    >>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
    >>> pywt.waverec(coeffs, 'db1')
    array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.])
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(coeffs) < 1:
        raise ValueError(
            "Coefficient list too short (minimum 1 arrays required).")
    elif len(coeffs) == 1:
        # level 0 transform (just returns the approximation coefficients)
        return coeffs[0]

    a, ds = coeffs[0], coeffs[1:]

    for d in ds:
        if d is not None and not isinstance(d, np.ndarray):
            raise ValueError((
                "Unexpected detail coefficient type: {}. Detail coefficients "
                "must be arrays as returned by wavedec. If you are using "
                "pywt.array_to_coeffs or pywt.unravel_coeffs, please specify "
                "output_format='wavedec'").format(type(d)))
        if (a is not None) and (d is not None):
            try:
                if a.shape[axis] == d.shape[axis] + 1:
                    a = a[tuple(slice(s) for s in d.shape)]
                elif a.shape[axis] != d.shape[axis]:
                    raise ValueError("coefficient shape mismatch")
            except IndexError:
                raise np.AxisError("Axis greater than coefficient dimensions")
        a = idwt(a, d, wavelet, mode, axis)

    return a


def wavedec2(data, wavelet, mode='symmetric', level=None, axes=(-2, -1)):
    """
    Multilevel 2D Discrete Wavelet Transform.

    Parameters
    ----------
    data : ndarray
        2D input data
    wavelet : Wavelet object or name string, or 2-tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    mode : str or 2-tuple of str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`. This can
        also be a tuple containing a mode to apply along each axis in ``axes``.
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axes : 2-tuple of ints, optional
        Axes over which to compute the DWT. Repeated elements are not allowed.

    Returns
    -------
    [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)] : list
        Coefficients list.  For user-specified ``axes``, ``cH*``
        corresponds to ``axes[0]`` while ``cV*`` corresponds to ``axes[1]``.
        The first element returned is the approximation coefficients for the
        nth level of decomposition.  Remaining elements are tuples of detail
        coefficients in descending order of decomposition level.
        (i.e. ``cH1`` are the horizontal detail coefficients at the first
        level)

    Examples
    --------
    >>> import pywt
    >>> import numpy as np
    >>> coeffs = pywt.wavedec2(np.ones((4,4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> pywt.waverec2(coeffs, 'db1')
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    """
    data = np.asarray(data)
    if data.ndim < 2:
        raise ValueError("Expected input data to have at least 2 dimensions.")

    axes = tuple(axes)
    if len(axes) != 2:
        raise ValueError("Expected 2 axes")
    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to wavedec2 must be unique.")
    try:
        axes_sizes = [data.shape[ax] for ax in axes]
    except IndexError:
        raise np.AxisError("Axis greater than data dimensions")

    wavelets = _wavelets_per_axis(wavelet, axes)
    dec_lengths = [w.dec_len for w in wavelets]

    level = _check_level(axes_sizes, dec_lengths, level)

    coeffs_list = []

    a = data
    for i in range(level):
        a, ds = dwt2(a, wavelet, mode, axes)
        coeffs_list.append(ds)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec2(coeffs, wavelet, mode='symmetric', axes=(-2, -1)):
    """
    Multilevel 2D Inverse Discrete Wavelet Transform.

    coeffs : list or tuple
        Coefficients list [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]
    wavelet : Wavelet object or name string, or 2-tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    mode : str or 2-tuple of str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`. This can
        also be a tuple containing a mode to apply along each axis in ``axes``.
    axes : 2-tuple of ints, optional
        Axes over which to compute the IDWT. Repeated elements are not allowed.

    Returns
    -------
    2D array of reconstructed data.

    Notes
    -----
    It may sometimes be desired to run ``waverec2`` with some sets of
    coefficients omitted.  This can best be done by setting the corresponding
    arrays to zero arrays of matching shape and dtype.  Explicitly removing
    list or tuple entries or setting them to None is not supported.

    Specifically, to ignore all detail coefficients at level 2, one could do::

        coeffs[-2] == tuple([np.zeros_like(v) for v in coeffs[-2]])

    Examples
    --------
    >>> import pywt
    >>> import numpy as np
    >>> coeffs = pywt.wavedec2(np.ones((4,4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> pywt.waverec2(coeffs, 'db1')
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    """
    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to waverec2 must be unique.")

    if len(coeffs) < 1:
        raise ValueError(
            "Coefficient list too short (minimum 1 array required).")
    elif len(coeffs) == 1:
        # level 0 transform (just returns the approximation coefficients)
        return coeffs[0]

    a, ds = coeffs[0], coeffs[1:]
    a = np.asarray(a)

    for d in ds:
        if not isinstance(d, (list, tuple)) or len(d) != 3:
            raise ValueError((
                "Unexpected detail coefficient type: {}. Detail coefficients "
                "must be a 3-tuple of arrays as returned by wavedec2. If you "
                "are using pywt.array_to_coeffs or pywt.unravel_coeffs, "
                "please specify output_format='wavedec2'").format(type(d)))
        d = tuple(np.asarray(coeff) if coeff is not None else None
                  for coeff in d)
        d_shapes = (coeff.shape for coeff in d if coeff is not None)
        try:
            d_shape = next(d_shapes)
        except StopIteration:
            idxs = slice(None), slice(None)
        else:
            if not all(s == d_shape for s in d_shapes):
                raise ValueError("All detail shapes must be the same length.")
            idxs = tuple(slice(None, -1 if a_len == d_len + 1 else None)
                         for a_len, d_len in zip(a.shape, d_shape))
        a = idwt2((a[idxs], d), wavelet, mode, axes)

    return a


def _prep_axes_wavedecn(shape, axes):
    if len(shape) < 1:
        raise ValueError("Expected at least 1D input data.")
    ndim = len(shape)
    if np.isscalar(axes):
        axes = (axes, )
    if axes is None:
        axes = range(ndim)
    else:
        axes = tuple(axes)
    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to wavedecn must be unique.")
    try:
        axes_shapes = [shape[ax] for ax in axes]
    except IndexError:
        raise np.AxisError("Axis greater than data dimensions")
    ndim_transform = len(axes)
    return axes, axes_shapes, ndim_transform


def wavedecn(data, wavelet, mode='symmetric', level=None, axes=None):
    """
    Multilevel nD Discrete Wavelet Transform.

    Parameters
    ----------
    data : ndarray
        nD input data
    wavelet : Wavelet object or name string, or tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    mode : str or tuple of str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`. This can
        also be a tuple containing a mode to apply along each axis in ``axes``.
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axes : sequence of ints, optional
        Axes over which to compute the DWT. Axes may not be repeated. The
        default is None, which means transform all axes
        (``axes = range(data.ndim)``).

    Returns
    -------
    [cAn, {details_level_n}, ... {details_level_1}] : list
        Coefficients list.  Coefficients are listed in descending order of
        decomposition level.  ``cAn`` are the approximation coefficients at
        level ``n``.  Each ``details_level_i`` element is a dictionary
        containing detail coefficients at level ``i`` of the decomposition. As
        a concrete example, a 3D decomposition would have the following set of
        keys in each ``details_level_i`` dictionary::

            {'aad', 'ada', 'daa', 'add', 'dad', 'dda', 'ddd'}

        where the order of the characters in each key map to the specified
        ``axes``.

    Examples
    --------
    >>> import numpy as np
    >>> from pywt import wavedecn, waverecn
    >>> coeffs = wavedecn(np.ones((4, 4, 4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> waverecn(coeffs, 'db1')  # doctest: +NORMALIZE_WHITESPACE
    array([[[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]]])

    """
    data = np.asarray(data)
    axes, axes_shapes, ndim_transform = _prep_axes_wavedecn(data.shape, axes)
    wavelets = _wavelets_per_axis(wavelet, axes)
    dec_lengths = [w.dec_len for w in wavelets]

    level = _check_level(axes_shapes, dec_lengths, level)

    coeffs_list = []

    a = data
    for i in range(level):
        coeffs = dwtn(a, wavelet, mode, axes)
        a = coeffs.pop('a' * ndim_transform)
        coeffs_list.append(coeffs)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def _match_coeff_dims(a_coeff, d_coeff_dict):
    # For each axis, compare the approximation coeff shape to one of the
    # stored detail coeffs and truncate the last element along the axis
    # if necessary.
    if a_coeff is None:
        return None
    if not d_coeff_dict:
        return a_coeff
    d_coeff = d_coeff_dict[next(iter(d_coeff_dict))]
    size_diffs = np.subtract(a_coeff.shape, d_coeff.shape)
    if np.any((size_diffs < 0) | (size_diffs > 1)):
        print(size_diffs)
        raise ValueError("incompatible coefficient array sizes")
    return a_coeff[tuple(slice(s) for s in d_coeff.shape)]


def waverecn(coeffs, wavelet, mode='symmetric', axes=None):
    """
    Multilevel nD Inverse Discrete Wavelet Transform.

    coeffs : array_like
        Coefficients list [cAn, {details_level_n}, ... {details_level_1}]
    wavelet : Wavelet object or name string, or tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    mode : str or tuple of str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`. This can
        also be a tuple containing a mode to apply along each axis in ``axes``.
    axes : sequence of ints, optional
        Axes over which to compute the IDWT.  Axes may not be repeated.

    Returns
    -------
    nD array of reconstructed data.

    Notes
    -----
    It may sometimes be desired to run ``waverecn`` with some sets of
    coefficients omitted.  This can best be done by setting the corresponding
    arrays to zero arrays of matching shape and dtype.  Explicitly removing
    list or dictionary entries or setting them to None is not supported.

    Specifically, to ignore all detail coefficients at level 2, one could do::

        coeffs[-2] = {k: np.zeros_like(v) for k, v in coeffs[-2].items()}

    Examples
    --------
    >>> import numpy as np
    >>> from pywt import wavedecn, waverecn
    >>> coeffs = wavedecn(np.ones((4, 4, 4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> waverecn(coeffs, 'db1')  # doctest: +NORMALIZE_WHITESPACE
    array([[[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]]])

    """
    if len(coeffs) < 1:
        raise ValueError(
            "Coefficient list too short (minimum 1 array required).")

    a, ds = coeffs[0], coeffs[1:]

    # this dictionary check must be prior to the call to _fix_coeffs
    if len(ds) > 0 and not all([isinstance(d, dict) for d in ds]):
        raise ValueError((
            "Unexpected detail coefficient type: {}. Detail coefficients "
            "must be a dictionary of arrays as returned by wavedecn. If "
            "you are using pywt.array_to_coeffs or pywt.unravel_coeffs, "
            "please specify output_format='wavedecn'").format(type(ds[0])))

    # Raise error for invalid key combinations
    ds = list(map(_fix_coeffs, ds))

    if not ds:
        # level 0 transform (just returns the approximation coefficients)
        return coeffs[0]
    if a is None and not any(ds):
        raise ValueError(
            "At least one coefficient must contain a valid value.")

    coeff_ndims = []
    if a is not None:
        a = np.asarray(a)
        coeff_ndims.append(a.ndim)
    for d in ds:
        coeff_ndims += [v.ndim for k, v in d.items()]

    # test that all coefficients have a matching number of dimensions
    unique_coeff_ndims = np.unique(coeff_ndims)
    if len(unique_coeff_ndims) == 1:
        ndim = unique_coeff_ndims[0]
    else:
        raise ValueError(
            "All coefficients must have a matching number of dimensions")

    if np.isscalar(axes):
        axes = (axes, )
    if axes is None:
        axes = range(ndim)
    else:
        axes = tuple(axes)
    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to waverecn must be unique.")
    ndim_transform = len(axes)

    for idx, d in enumerate(ds):
        if a is None and not d:
            continue
        # The following if statement handles the case where the approximation
        # coefficient returned at the previous level may exceed the size of the
        # stored detail coefficients by 1 on any given axis.
        if idx > 0:
            a = _match_coeff_dims(a, d)
        d['a' * ndim_transform] = a
        a = idwtn(d, wavelet, mode, axes)

    return a


def _coeffs_wavedec_to_wavedecn(coeffs):
    """Convert wavedec coefficients to the wavedecn format."""
    if len(coeffs) == 0:
        return coeffs
    coeffs = copy(coeffs)
    for n in range(1, len(coeffs)):
        if coeffs[n] is None:
            continue
        if coeffs[n].ndim != 1:
            raise ValueError("expected a 1D coefficient array")
        coeffs[n] = dict(d=coeffs[n])
    return coeffs


def _coeffs_wavedec2_to_wavedecn(coeffs):
    """Convert wavedec2 coefficients to the wavedecn format."""
    if len(coeffs) == 0:
        return coeffs
    coeffs = copy(coeffs)
    for n in range(1, len(coeffs)):
        if not isinstance(coeffs[n], (tuple, list)) or len(coeffs[n]) != 3:
            raise ValueError("expected a 3-tuple of detail coefficients")
        (da, ad, dd) = coeffs[n]
        if da is None or ad is None or dd is None:
            raise ValueError(
                "Expected numpy arrays of detail coefficients. Setting "
                "coefficients to None is not supported.")
        coeffs[n] = dict(ad=ad, da=da, dd=dd)
    return coeffs


def _determine_coeff_array_shape(coeffs, axes):
    arr_shape = np.asarray(coeffs[0].shape)
    axes = np.asarray(axes)  # axes that were transformed
    ndim_transform = len(axes)
    ncoeffs = coeffs[0].size
    for d in coeffs[1:]:
        arr_shape[axes] += np.asarray(d['d'*ndim_transform].shape)[axes]
        for k, v in d.items():
            ncoeffs += v.size
    arr_shape = tuple(arr_shape.tolist())
    # if the total number of coefficients doesn't equal the size of the array
    # then tight packing is not possible.
    is_tight_packing = (np.prod(arr_shape) == ncoeffs)
    return arr_shape, is_tight_packing


def _prepare_coeffs_axes(coeffs, axes):
    """Helper function to check type of coeffs and axes.

    This code is used by both coeffs_to_array and ravel_coeffs.
    """
    if not isinstance(coeffs, list) or len(coeffs) == 0:
        raise ValueError("input must be a list of coefficients from wavedecn")
    if coeffs[0] is None:
        raise ValueError("coeffs_to_array does not support missing "
                         "coefficients.")
    if not isinstance(coeffs[0], np.ndarray):
        raise ValueError("first list element must be a numpy array")
    ndim = coeffs[0].ndim

    if len(coeffs) > 1:
        # convert wavedec or wavedec2 format coefficients to waverecn format
        if isinstance(coeffs[1], dict):
            pass
        elif isinstance(coeffs[1], np.ndarray):
            coeffs = _coeffs_wavedec_to_wavedecn(coeffs)
        elif isinstance(coeffs[1], (tuple, list)):
            coeffs = _coeffs_wavedec2_to_wavedecn(coeffs)
        else:
            raise ValueError("invalid coefficient list")

    if len(coeffs) == 1:
        # no detail coefficients were found
        return coeffs, axes, ndim, None

    # Determine the number of dimensions that were transformed via key length
    ndim_transform = len(list(coeffs[1].keys())[0])
    if axes is None:
        if ndim_transform < ndim:
            raise ValueError(
                "coeffs corresponds to a DWT performed over only a subset of "
                "the axes.  In this case, axes must be specified.")
        axes = np.arange(ndim)

    if len(axes) != ndim_transform:
        raise ValueError(
            "The length of axes doesn't match the number of dimensions "
            "transformed.")

    return coeffs, axes, ndim, ndim_transform


def coeffs_to_array(coeffs, padding=0, axes=None):
    """
    Arrange a wavelet coefficient list from ``wavedecn`` into a single array.

    Parameters
    ----------

    coeffs : array-like
        Dictionary of wavelet coefficients as returned by pywt.wavedecn
    padding : float or None, optional
        The value to use for the background if the coefficients cannot be
        tightly packed. If None, raise an error if the coefficients cannot be
        tightly packed.
    axes : sequence of ints, optional
        Axes over which the DWT that created ``coeffs`` was performed.  The
        default value of None corresponds to all axes.

    Returns
    -------
    coeff_arr : array-like
        Wavelet transform coefficient array.
    coeff_slices : list
        List of slices corresponding to each coefficient.  As a 2D example,
        ``coeff_arr[coeff_slices[1]['dd']]`` would extract the first level
        detail coefficients from ``coeff_arr``.

    See Also
    --------
    array_to_coeffs : the inverse of coeffs_to_array

    Notes
    -----
    Assume a 2D coefficient dictionary, c, from a two-level transform.

    Then all 2D coefficients will be stacked into a single larger 2D array
    as follows::

        +---------------+---------------+-------------------------------+
        |               |               |                               |
        |     c[0]      |  c[1]['da']   |                               |
        |               |               |                               |
        +---------------+---------------+           c[2]['da']          |
        |               |               |                               |
        | c[1]['ad']    |  c[1]['dd']   |                               |
        |               |               |                               |
        +---------------+---------------+ ------------------------------+
        |                               |                               |
        |                               |                               |
        |                               |                               |
        |          c[2]['ad']           |           c[2]['dd']          |
        |                               |                               |
        |                               |                               |
        |                               |                               |
        +-------------------------------+-------------------------------+

    If the transform was not performed with mode "periodization" or the signal
    length was not a multiple of ``2**level``, coefficients at each subsequent
    scale will not be exactly 1/2 the size of those at the previous level due
    to additional coefficients retained to handle the boundary condition. In
    these cases, the default setting of `padding=0` indicates to pad the
    individual coefficient arrays with 0 as needed so that they can be stacked
    into a single, contiguous array.

    Examples
    --------
    >>> import pywt
    >>> cam = pywt.data.camera()
    >>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
    >>> arr, coeff_slices = pywt.coeffs_to_array(coeffs)

    """

    coeffs, axes, ndim, ndim_transform = _prepare_coeffs_axes(coeffs, axes)

    # initialize with the approximation coefficients.
    a_coeffs = coeffs[0]
    a_shape = a_coeffs.shape

    if len(coeffs) == 1:
        # only a single approximation coefficient array was found
        return a_coeffs, [tuple([slice(None)] * ndim)]

    # determine size of output and if tight packing is possible
    arr_shape, is_tight_packing = _determine_coeff_array_shape(coeffs, axes)

    # preallocate output array
    if padding is None:
        if not is_tight_packing:
            raise ValueError("array coefficients cannot be tightly packed")
        coeff_arr = np.empty(arr_shape, dtype=a_coeffs.dtype)
    else:
        coeff_arr = np.full(arr_shape, padding, dtype=a_coeffs.dtype)

    a_slices = tuple([slice(s) for s in a_shape])
    coeff_arr[a_slices] = a_coeffs

    # initialize list of coefficient slices
    coeff_slices = []
    coeff_slices.append(a_slices)

    # loop over the detail coefficients, adding them to coeff_arr
    ds = coeffs[1:]
    for coeff_dict in ds:
        coeff_slices.append({})  # new dictionary for detail coefficients
        if np.any([d is None for d in coeff_dict.values()]):
            raise ValueError("coeffs_to_array does not support missing "
                             "coefficients.")
        d_shape = coeff_dict['d' * ndim_transform].shape
        for key in coeff_dict.keys():
            d = coeff_dict[key]
            slice_array = [slice(None), ] * ndim
            for i, let in enumerate(key):
                ax_i = axes[i]  # axis corresponding to this transform index
                if let == 'a':
                    slice_array[ax_i] = slice(d.shape[ax_i])
                elif let == 'd':
                    slice_array[ax_i] = slice(a_shape[ax_i],
                                              a_shape[ax_i] + d.shape[ax_i])
                else:
                    raise ValueError("unexpected letter: {}".format(let))
            slice_array = tuple(slice_array)
            coeff_arr[slice_array] = d
            coeff_slices[-1][key] = slice_array
        a_shape = [a_shape[n] + d_shape[n] for n in range(ndim)]
    return coeff_arr, coeff_slices


def array_to_coeffs(arr, coeff_slices, output_format='wavedecn'):
    """
    Convert a combined array of coefficients back to a list compatible with
    ``waverecn``.

    Parameters
    ----------

    arr : array-like
        An array containing all wavelet coefficients.  This should have been
        generated via ``coeffs_to_array``.
    coeff_slices : list of tuples
        List of slices corresponding to each coefficient as obtained from
        ``array_to_coeffs``.
    output_format : {'wavedec', 'wavedec2', 'wavedecn'}
        Make the form of the coefficients compatible with this type of
        multilevel transform.

    Returns
    -------
    coeffs: array-like
        Wavelet transform coefficient array.

    See Also
    --------
    coeffs_to_array : the inverse of array_to_coeffs

    Notes
    -----
    A single large array containing all coefficients will have subsets stored,
    into a ``waverecn`` list, c, as indicated below::

        +---------------+---------------+-------------------------------+
        |               |               |                               |
        |     c[0]      |  c[1]['da']   |                               |
        |               |               |                               |
        +---------------+---------------+           c[2]['da']          |
        |               |               |                               |
        | c[1]['ad']    |  c[1]['dd']   |                               |
        |               |               |                               |
        +---------------+---------------+ ------------------------------+
        |                               |                               |
        |                               |                               |
        |                               |                               |
        |          c[2]['ad']           |           c[2]['dd']          |
        |                               |                               |
        |                               |                               |
        |                               |                               |
        +-------------------------------+-------------------------------+

    Examples
    --------
    >>> import pywt
    >>> from numpy.testing import assert_array_almost_equal
    >>> cam = pywt.data.camera()
    >>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
    >>> arr, coeff_slices = pywt.coeffs_to_array(coeffs)
    >>> coeffs_from_arr = pywt.array_to_coeffs(arr, coeff_slices,
    ...                                        output_format='wavedecn')
    >>> cam_recon = pywt.waverecn(coeffs_from_arr, wavelet='db2')
    >>> assert_array_almost_equal(cam, cam_recon)

    """
    arr = np.asarray(arr)
    coeffs = []
    if len(coeff_slices) == 0:
        raise ValueError("empty list of coefficient slices")
    else:
        coeffs.append(arr[coeff_slices[0]])

    # difference coefficients at each level
    for n in range(1, len(coeff_slices)):
        if output_format == 'wavedec':
            d = arr[coeff_slices[n]['d']]
        elif output_format == 'wavedec2':
            d = (arr[coeff_slices[n]['da']],
                 arr[coeff_slices[n]['ad']],
                 arr[coeff_slices[n]['dd']])
        elif output_format == 'wavedecn':
            d = {}
            for k, v in coeff_slices[n].items():
                d[k] = arr[v]
        else:
            raise ValueError(
                "Unrecognized output format: {}".format(output_format))
        coeffs.append(d)
    return coeffs


def wavedecn_shapes(shape, wavelet, mode='symmetric', level=None, axes=None):
    """Subband shapes for a multilevel nD discrete wavelet transform.

    Parameters
    ----------
    shape : sequence of ints
        The shape of the data to be transformed.
    wavelet : Wavelet object or name string, or tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    mode : str or tuple of str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`. This can
        also be a tuple containing a mode to apply along each axis in ``axes``.
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axes : sequence of ints, optional
        Axes over which to compute the DWT. Axes may not be repeated. The
        default is None, which means transform all axes
        (``axes = range(data.ndim)``).

    Returns
    -------
    shapes : [cAn, {details_level_n}, ... {details_level_1}] : list
        Coefficients shape list.  Mirrors the output of ``wavedecn``, except
        it contains only the shapes of the coefficient arrays rather than the
        arrays themselves.

    Examples
    --------
    >>> import pywt
    >>> pywt.wavedecn_shapes((64, 32), wavelet='db2', level=3, axes=(0, ))
    [(10, 32), {'d': (10, 32)}, {'d': (18, 32)}, {'d': (33, 32)}]
    """
    axes, axes_shapes, ndim_transform = _prep_axes_wavedecn(shape, axes)
    wavelets = _wavelets_per_axis(wavelet, axes)
    modes = _modes_per_axis(mode, axes)
    dec_lengths = [w.dec_len for w in wavelets]

    level = _check_level(min(axes_shapes), max(dec_lengths), level)

    shapes = []
    for i in range(level):
        detail_keys = [''.join(c) for c in product('ad', repeat=len(axes))]
        new_shapes = {k: list(shape) for k in detail_keys}
        for axis, wav, mode in zip(axes, wavelets, modes):
            s = dwt_coeff_len(shape[axis], filter_len=wav.dec_len, mode=mode)
            for k in detail_keys:
                new_shapes[k][axis] = s
        for k, v in new_shapes.items():
            new_shapes[k] = tuple(v)
        shapes.append(new_shapes)
        shape = new_shapes.pop('a' * ndim_transform)
    shapes.append(shape)
    shapes.reverse()
    return shapes


def wavedecn_size(shapes):
    """Compute the total number of wavedecn coefficients.

    Parameters
    ----------
    shapes : list of coefficient shapes
        A set of coefficient shapes as returned by ``wavedecn_shapes``.
        Alternatively, the user can specify a set of coefficients as returned
        by ``wavedecn``.

    Returns
    -------
    size : int
        The total number of coefficients.

    Examples
    --------
    >>> import numpy as np
    >>> import pywt
    >>> data_shape = (64, 32)
    >>> shapes = pywt.wavedecn_shapes(data_shape, 'db2', mode='periodization')
    >>> pywt.wavedecn_size(shapes)
    2048
    >>> coeffs = pywt.wavedecn(np.ones(data_shape), 'sym4', mode='symmetric')
    >>> pywt.wavedecn_size(coeffs)
    3087
    """
    def _size(x):
        """Size corresponding to ``x`` as either a shape tuple or ndarray."""
        if isinstance(x, np.ndarray):
            return x.size
        else:
            return np.prod(x)
    ncoeffs = _size(shapes[0])
    for d in shapes[1:]:
        for k, v in d.items():
            if v is None:
                raise ValueError(
                    "Setting coefficient arrays to None is not supported.")
            ncoeffs += _size(v)
    return ncoeffs


def dwtn_max_level(shape, wavelet, axes=None):
    """Compute the maximum level of decomposition for n-dimensional data.

    This returns the maximum number of levels of decomposition suitable for use
    with ``wavedec``, ``wavedec2`` or ``wavedecn``.

    Parameters
    ----------
    shape : sequence of ints
        Input data shape.
    wavelet : Wavelet object or name string, or tuple of wavelets
        Wavelet to use. This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    axes : sequence of ints, optional
        Axes over which to compute the DWT. Axes may not be repeated.

    Returns
    -------
    level : int
        Maximum level.

    Notes
    -----
    The level returned is the smallest ``dwt_max_level`` over all axes.

    Examples
    --------
    >>> import pywt
    >>> pywt.dwtn_max_level((64, 32), 'db2')
    3
    """
    # Determine the axes and shape for the transform
    axes, axes_shapes, ndim_transform = _prep_axes_wavedecn(shape, axes)

    # initialize a Wavelet object per (transformed) axis
    wavelets = _wavelets_per_axis(wavelet, axes)

    # maximum level of decomposition per axis
    max_levels = [dwt_max_level(n, wav.dec_len)
                  for n, wav in zip(axes_shapes, wavelets)]
    return min(max_levels)


def ravel_coeffs(coeffs, axes=None):
    """Ravel a set of multilevel wavelet coefficients into a single 1D array.

    Parameters
    ----------
    coeffs : array-like
        A list of multilevel wavelet coefficients as returned by
        ``wavedec``, ``wavedec2`` or ``wavedecn``. This function is also
        compatible with the output of ``swt``, ``swt2`` and ``swtn`` if those
        functions were called with ``trim_approx=True``.
    axes : sequence of ints, optional
        Axes over which the DWT that created ``coeffs`` was performed. The
        default value of None corresponds to all axes.

    Returns
    -------
    coeff_arr : array-like
        Wavelet transform coefficient array. All coefficients have been
        concatenated into a single array.
    coeff_slices : list
        List of slices corresponding to each coefficient. As a 2D example,
        ``coeff_arr[coeff_slices[1]['dd']]`` would extract the first level
        detail coefficients from ``coeff_arr``.
    coeff_shapes : list
        List of shapes corresponding to each coefficient. For example, in 2D,
        ``coeff_shapes[1]['dd']`` would contain the original shape of the first
        level detail coefficients array.

    See Also
    --------
    unravel_coeffs : the inverse of ravel_coeffs

    Examples
    --------
    >>> import pywt
    >>> cam = pywt.data.camera()
    >>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
    >>> arr, coeff_slices, coeff_shapes = pywt.ravel_coeffs(coeffs)

    """
    coeffs, axes, ndim, ndim_transform = _prepare_coeffs_axes(coeffs, axes)

    # initialize with the approximation coefficients.
    a_coeffs = coeffs[0]
    a_size = a_coeffs.size

    if len(coeffs) == 1:
        # only a single approximation coefficient array was found
        return a_coeffs.ravel(), [slice(a_size), ], [a_coeffs.shape, ]

    # preallocate output array
    arr_size = wavedecn_size(coeffs)
    coeff_arr = np.empty((arr_size, ), dtype=a_coeffs.dtype)

    a_slice = slice(a_size)
    coeff_arr[a_slice] = a_coeffs.ravel()

    # initialize list of coefficient slices
    coeff_slices = []
    coeff_shapes = []
    coeff_slices.append(a_slice)
    coeff_shapes.append(coeffs[0].shape)

    # loop over the detail coefficients, embedding them in coeff_arr
    ds = coeffs[1:]
    offset = a_size
    for coeff_dict in ds:
        # new dictionaries for detail coefficient slices and shapes
        coeff_slices.append({})
        coeff_shapes.append({})
        if np.any([d is None for d in coeff_dict.values()]):
            raise ValueError("coeffs_to_array does not support missing "
                             "coefficients.")
        # sort to make sure key order is consistent across Python versions
        keys = sorted(coeff_dict.keys())
        for key in keys:
            d = coeff_dict[key]
            sl = slice(offset, offset + d.size)
            offset += d.size
            coeff_arr[sl] = d.ravel()
            coeff_slices[-1][key] = sl
            coeff_shapes[-1][key] = d.shape
    return coeff_arr, coeff_slices, coeff_shapes


def unravel_coeffs(arr, coeff_slices, coeff_shapes, output_format='wavedecn'):
    """Unravel a raveled array of multilevel wavelet coefficients.

    Parameters
    ----------
    arr : array-like
        An array containing all wavelet coefficients. This should have been
        generated by applying ``ravel_coeffs`` to the output of ``wavedec``,
        ``wavedec2`` or ``wavedecn`` (or via ``swt``, ``swt2`` or ``swtn``
        with ``trim_approx=True``).
    coeff_slices : list of tuples
        List of slices corresponding to each coefficient as obtained from
        ``ravel_coeffs``.
    coeff_shapes : list of tuples
        List of shapes corresponding to each coefficient as obtained from
        ``ravel_coeffs``.
    output_format : {'wavedec', 'wavedec2', 'wavedecn', 'swt', 'swt2', 'swtn'}, optional
        Make the form of the unraveled coefficients compatible with this type
        of multilevel transform. The default is ``'wavedecn'``.

    Returns
    -------
    coeffs: list
        List of wavelet transform coefficients. The specific format of the list
        elements is determined by ``output_format``.

    See Also
    --------
    ravel_coeffs : the inverse of unravel_coeffs

    Examples
    --------
    >>> import pywt
    >>> from numpy.testing import assert_array_almost_equal
    >>> cam = pywt.data.camera()
    >>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
    >>> arr, coeff_slices, coeff_shapes = pywt.ravel_coeffs(coeffs)
    >>> coeffs_from_arr = pywt.unravel_coeffs(arr, coeff_slices, coeff_shapes,
    ...                                       output_format='wavedecn')
    >>> cam_recon = pywt.waverecn(coeffs_from_arr, wavelet='db2')
    >>> assert_array_almost_equal(cam, cam_recon)

    """
    arr = np.asarray(arr)
    coeffs = []
    if len(coeff_slices) == 0:
        raise ValueError("empty list of coefficient slices")
    elif len(coeff_shapes) == 0:
        raise ValueError("empty list of coefficient shapes")
    elif len(coeff_shapes) != len(coeff_slices):
        raise ValueError("coeff_shapes and coeff_slices have unequal length")
    else:
        coeffs.append(arr[coeff_slices[0]].reshape(coeff_shapes[0]))

    # difference coefficients at each level
    for n in range(1, len(coeff_slices)):
        slice_dict = coeff_slices[n]
        shape_dict = coeff_shapes[n]
        if output_format in ['wavedec', 'swt']:
            d = arr[slice_dict['d']].reshape(shape_dict['d'])
        elif output_format in ['wavedec2', 'swt2']:
            d = (arr[slice_dict['da']].reshape(shape_dict['da']),
                 arr[slice_dict['ad']].reshape(shape_dict['ad']),
                 arr[slice_dict['dd']].reshape(shape_dict['dd']))
        elif output_format in ['wavedecn', 'swtn']:
            d = {}
            for k, v in coeff_slices[n].items():
                d[k] = arr[v].reshape(shape_dict[k])
        else:
            raise ValueError(
                "Unrecognized output format: {}".format(output_format))
        coeffs.append(d)
    return coeffs


def _check_fswavedecn_axes(data, axes):
    """Axes checks common to fswavedecn, fswaverecn."""
    if len(axes) != len(set(axes)):
        raise np.AxisError("The axes passed to fswavedecn must be unique.")
    try:
        [data.shape[ax] for ax in axes]
    except IndexError:
        raise np.AxisError("Axis greater than data dimensions")


class FswavedecnResult(object):
    """Object representing fully separable wavelet transform coefficients.

    Parameters
    ----------
    coeffs : ndarray
        The coefficient array.
    coeff_slices : list
        List of slices corresponding to each detail or approximation
        coefficient array.
    wavelets : list of pywt.DiscreteWavelet objects
        The wavelets used.  Will be a list with length equal to
        ``len(axes)``.
    mode_enums : list of int
        The border modes used.  Will be a list with length equal to
        ``len(axes)``.
    axes : tuple of int
        The set of axes over which the transform was performed.

    """
    def __init__(self, coeffs, coeff_slices, wavelets, mode_enums,
                 axes):
        self._coeffs = coeffs
        self._coeff_slices = coeff_slices
        self._axes = axes
        if not np.all(isinstance(w, Wavelet) for w in wavelets):
            raise ValueError(
                "wavelets must contain pywt.Wavelet objects")
        self._wavelets = wavelets
        if not np.all(isinstance(m, int) for m in mode_enums):
            raise ValueError(
                "mode_enums must be integers")
        self._mode_enums = mode_enums

    @property
    def coeffs(self):
        """ndarray: All coefficients stacked into a single array."""
        return self._coeffs

    @coeffs.setter
    def coeffs(self, c):
        if c.shape != self._coeffs.shape:
            raise ValueError("new coefficient array must match the existing "
                             "coefficient shape")
        self._coeffs = c

    @property
    def coeff_slices(self):
        """List: List of coefficient slices."""
        return self._coeff_slices

    @property
    def ndim(self):
        """int: Number of data dimensions."""
        return self.coeffs.ndim

    @property
    def ndim_transform(self):
        """int: Number of axes transformed."""
        return len(self.axes)

    @property
    def axes(self):
        """List of str: The axes the transform was performed along."""
        return self._axes

    @property
    def levels(self):
        """List of int: Levels of decomposition along each transformed axis."""
        return [len(s) - 1 for s in self.coeff_slices]

    @property
    def wavelets(self):
        """List of pywt.DiscreteWavelet: wavelet for each transformed axis."""
        return self._wavelets

    @property
    def wavelet_names(self):
        """List of pywt.DiscreteWavelet: wavelet for each transformed axis."""
        return [w.name for w in self._wavelets]

    @property
    def modes(self):
        """List of str: The border mode used along each transformed axis."""
        names_dict = {getattr(Modes, mode): mode
                      for mode in Modes.modes}
        return [names_dict[m] for m in self._mode_enums]

    def _get_coef_sl(self, levels):
        sl = [slice(None), ] * self.ndim
        for n, (ax, lev) in enumerate(zip(self.axes, levels)):
            sl[ax] = self.coeff_slices[n][lev]
        return tuple(sl)

    @property
    def approx(self):
        """ndarray: The approximation coefficients."""
        sl = self._get_coef_sl((0, )*self.ndim)
        return self._coeffs[sl]

    @approx.setter
    def approx(self, a):
        sl = self._get_coef_sl((0, )*self.ndim)
        if self._coeffs[sl].shape != a.shape:
            raise ValueError(
                "x does not match the shape of the requested coefficient")
        self._coeffs[sl] = a

    def _validate_index(self, levels):
        levels = tuple(levels)

        if len(levels) != len(self.axes):
            raise ValueError(
                "levels must match the number of transformed axes")

        # check that all elements are non-negative integers
        if (not np.all([isinstance(lev, numbers.Number) for lev in levels]) or
                np.any(np.asarray(levels) % 1 > 0) or
                np.any([lev < 0 for lev in levels])):
            raise ValueError("Index must be a tuple of non-negative integers")
        # convert integer-valued floats to int
        levels = tuple([int(lev) for lev in levels])

        # check for out of range levels
        if np.any([lev > maxlev for lev, maxlev in zip(levels, self.levels)]):
            raise ValueError(
                "Specified indices exceed the number of transform levels.")

    def __getitem__(self, levels):
        """Retrieve a coefficient subband.

        Parameters
        ----------
        levels : tuple of int
            The number of degrees of decomposition along each transformed
            axis.
        """
        self._validate_index(levels)
        sl = self._get_coef_sl(levels)
        return self._coeffs[sl]

    def __setitem__(self, levels, x):
        """Assign values to a coefficient subband.

        Parameters
        ----------
        levels : tuple of int
            The number of degrees of decomposition along each transformed
            axis.
        x : ndarray
            The data corresponding to assign. It must match the expected
            shape and dtype of the specified subband.
        """
        self._validate_index(levels)
        sl = self._get_coef_sl(levels)
        current_dtype = self._coeffs[sl].dtype
        if self._coeffs[sl].shape != x.shape:
            raise ValueError(
                "x does not match the shape of the requested coefficient")
        if x.dtype != current_dtype:
            warnings.warn("dtype mismatch:  converting the provided array to"
                          "dtype {}".format(current_dtype))
        self._coeffs[sl] = x

    def detail_keys(self):
        """Return a list of all detail coefficient keys.

        Returns
        -------
        keys : list of str
            List of all detail coefficient keys.
        """
        keys = list(product(*(range(l+1) for l in self.levels)))
        keys.remove((0, )*len(self.axes))
        return sorted(keys)


def fswavedecn(data, wavelet, mode='symmetric', levels=None, axes=None):
    """Fully Separable Wavelet Decomposition.

    This is a variant of the multilevel discrete wavelet transform where all
    levels of decomposition are performed along a single axis prior to moving
    onto the next axis.  Unlike in ``wavedecn``, the number of levels of
    decomposition are not required to be the same along each axis which can be
    a benefit for anisotropic data.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string, or tuple of wavelets
        Wavelet to use.  This can also be a tuple containing a wavelet to
        apply along each axis in ``axes``.
    mode : str or tuple of str, optional
        Signal extension mode, see :ref:`Modes <ref-modes>`. This can
        also be a tuple containing a mode to apply along each axis in ``axes``.
    levels : int or sequence of ints, optional
        Decomposition levels along each axis (must be >= 0). If an integer is
        provided, the same number of levels are used for all axes. If
        ``levels`` is None (default), ``dwt_max_level`` will be used to compute
        the maximum number of levels possible for each axis.
    axes : sequence of ints, optional
        Axes over which to compute the transform. Axes may not be repeated. The
        default is to transform along all axes.

    Returns
    -------
    fswavedecn_result : FswavedecnResult object
        Contains the wavelet coefficients, slice objects to allow obtaining
        the coefficients per detail or approximation level, and more.
        See ``FswavedecnResult`` for details.

    Examples
    --------
    >>> from pywt import fswavedecn
    >>> fs_result = fswavedecn(np.ones((32, 32)), 'sym2', levels=(1, 3))
    >>> print(fs_result.detail_keys())
    [(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)]
    >>> approx_coeffs = fs_result.approx
    >>> detail_1_2 = fs_result[(1, 2)]


    Notes
    -----
    This transformation has been variously referred to as the (fully) separable
    wavelet transform (e.g. refs [1]_, [3]_), the tensor-product wavelet
    ([2]_) or the hyperbolic wavelet transform ([4]_).  It is well suited to
    data with anisotropic smoothness.

    In [2]_ it was demonstrated that fully separable transform performs at
    least as well as the DWT for image compression.  Computation time is a
    factor 2 larger than that for the DWT.

    See Also
    --------
    fswaverecn : inverse of fswavedecn

    References
    ----------
    .. [1] PH Westerink. Subband Coding of Images. Ph.D. dissertation, Dept.
       Elect. Eng., Inf. Theory Group, Delft Univ. Technol., Delft, The
       Netherlands, 1989.  (see Section 2.3)
       http://resolver.tudelft.nl/uuid:a4d195c3-1f89-4d66-913d-db9af0969509

    .. [2] CP Rosiene and TQ Nguyen. Tensor-product wavelet vs. Mallat
       decomposition: A comparative analysis, in Proc. IEEE Int. Symp.
       Circuits and Systems, Orlando, FL, Jun. 1999, pp. 431-434.

    .. [3] V Velisavljevic, B Beferull-Lozano, M Vetterli and PL Dragotti.
       Directionlets: Anisotropic Multidirectional Representation With
       Separable Filtering. IEEE Transactions on Image Processing, Vol. 15,
       No. 7, July 2006.

    .. [4] RA DeVore, SV Konyagin and VN Temlyakov. "Hyperbolic wavelet
       approximation," Constr. Approx. 14 (1998), 1-26.
    """
    data = np.asarray(data)
    if axes is None:
        axes = tuple(np.arange(data.ndim))
    _check_fswavedecn_axes(data, axes)

    if levels is None or np.isscalar(levels):
        levels = [levels, ] * len(axes)
    if len(levels) != len(axes):
        raise ValueError("levels must match the length of the axes list")

    modes = _modes_per_axis(mode, axes)
    wavelets = _wavelets_per_axis(wavelet, axes)

    coeff_slices = [slice(None), ] * len(axes)
    coeffs_arr = data
    for ax_count, (ax, lev, wav, mode) in enumerate(
            zip(axes, levels, wavelets, modes)):
        coeffs = wavedec(coeffs_arr, wav, mode=mode, level=lev, axis=ax)

        # Slice objects for accessing coefficient subsets.
        # These can be used to access specific detail coefficient arrays
        # (e.g. as needed for inverse transformation via fswaverecn).
        c_shapes = [c.shape[ax] for c in coeffs]
        c_offsets = np.cumsum([0, ] + c_shapes)
        coeff_slices[ax_count] = [
            slice(c_offsets[d], c_offsets[d+1]) for d in range(len(c_shapes))]

        # stack the coefficients from all levels into a single array
        coeffs_arr = np.concatenate(coeffs, axis=ax)

    return FswavedecnResult(coeffs_arr, coeff_slices, wavelets, modes, axes)


def fswaverecn(fswavedecn_result):
    """Fully Separable Inverse Wavelet Reconstruction.

    Parameters
    ----------
    fswavedecn_result : FswavedecnResult object
        FswavedecnResult object from ``fswavedecn``.

    Returns
    -------
    reconstructed : ndarray
        Array of reconstructed data.

    Notes
    -----
    This transformation has been variously referred to as the (fully) separable
    wavelet transform (e.g. refs [1]_, [3]_), the tensor-product wavelet
    ([2]_) or the hyperbolic wavelet transform ([4]_).  It is well suited to
    data with anisotropic smoothness.

    In [2]_ it was demonstrated that the fully separable transform performs at
    least as well as the DWT for image compression. Computation time is a
    factor 2 larger than that for the DWT.

    See Also
    --------
    fswavedecn : inverse of fswaverecn

    References
    ----------
    .. [1] PH Westerink. Subband Coding of Images. Ph.D. dissertation, Dept.
       Elect. Eng., Inf. Theory Group, Delft Univ. Technol., Delft, The
       Netherlands, 1989.  (see Section 2.3)
       http://resolver.tudelft.nl/uuid:a4d195c3-1f89-4d66-913d-db9af0969509

    .. [2] CP Rosiene and TQ Nguyen. Tensor-product wavelet vs. Mallat
       decomposition: A comparative analysis, in Proc. IEEE Int. Symp.
       Circuits and Systems, Orlando, FL, Jun. 1999, pp. 431-434.

    .. [3] V Velisavljevic, B Beferull-Lozano, M Vetterli and PL Dragotti.
       Directionlets: Anisotropic Multidirectional Representation With
       Separable Filtering. IEEE Transactions on Image Processing, Vol. 15,
       No. 7, July 2006.

    .. [4] RA DeVore, SV Konyagin and VN Temlyakov. "Hyperbolic wavelet
       approximation," Constr. Approx. 14 (1998), 1-26.
    """
    coeffs_arr = fswavedecn_result.coeffs
    coeff_slices = fswavedecn_result.coeff_slices
    axes = fswavedecn_result.axes
    modes = fswavedecn_result.modes
    wavelets = fswavedecn_result.wavelets

    _check_fswavedecn_axes(coeffs_arr, axes)
    if len(axes) != len(coeff_slices):
        raise ValueError("dimension mismatch")

    arr = coeffs_arr
    csl = [slice(None), ] * arr.ndim
    # for ax_count, (ax, wav, mode) in reversed(
    #         list(enumerate(zip(axes, wavelets, modes)))):
    for ax_count, (ax, wav, mode) in enumerate(zip(axes, wavelets, modes)):
        coeffs = []
        for sl in coeff_slices[ax_count]:
            csl[ax] = sl
            coeffs.append(arr[tuple(csl)])
        csl[ax] = slice(None)
        arr = waverec(coeffs, wav, mode=mode, axis=ax)
    return arr