1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
import warnings
from itertools import product
import numpy as np
from ._c99_config import _have_c99_complex
from ._extensions._dwt import idwt_single
from ._extensions._swt import swt_max_level, swt as _swt, swt_axis as _swt_axis
from ._extensions._pywt import Wavelet, Modes, _check_dtype
from ._multidim import idwt2, idwtn
from ._utils import _as_wavelet, _wavelets_per_axis
__all__ = ["swt", "swt_max_level", 'iswt', 'swt2', 'iswt2', 'swtn', 'iswtn']
def _rescale_wavelet_filterbank(wavelet, sf):
wav = Wavelet(wavelet.name + 'r',
[np.asarray(f) * sf for f in wavelet.filter_bank])
# copy attributes from the original wavelet
wav.orthogonal = wavelet.orthogonal
wav.biorthogonal = wavelet.biorthogonal
return wav
def swt(data, wavelet, level=None, start_level=0, axis=-1,
trim_approx=False, norm=False):
"""
Multilevel 1D stationary wavelet transform.
Parameters
----------
data :
Input signal
wavelet :
Wavelet to use (Wavelet object or name)
level : int, optional
The number of decomposition steps to perform.
start_level : int, optional
The level at which the decomposition will begin (it allows one to
skip a given number of transform steps and compute
coefficients starting from start_level) (default: 0)
axis: int, optional
Axis over which to compute the SWT. If not given, the
last axis is used.
trim_approx : bool, optional
If True, approximation coefficients at the final level are retained.
norm : bool, optional
If True, transform is normalized so that the energy of the coefficients
will be equal to the energy of ``data``. In other words,
``np.linalg.norm(data.ravel())`` will equal the norm of the
concatenated transform coefficients when ``trim_approx`` is True.
Returns
-------
coeffs : list
List of approximation and details coefficients pairs in order
similar to wavedec function::
[(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]
where n equals input parameter ``level``.
If ``start_level = m`` is given, then the beginning m steps are
skipped::
[(cAm+n, cDm+n), ..., (cAm+1, cDm+1), (cAm, cDm)]
If ``trim_approx`` is ``True``, then the output list is exactly as in
``pywt.wavedec``, where the first coefficient in the list is the
approximation coefficient at the final level and the rest are the
detail coefficients::
[cAn, cDn, ..., cD2, cD1]
Notes
-----
The implementation here follows the "algorithm a-trous" and requires that
the signal length along the transformed axis be a multiple of ``2**level``.
If this is not the case, the user should pad up to an appropriate size
using a function such as ``numpy.pad``.
A primary benefit of this transform in comparison to its decimated
counterpart (``pywt.wavedecn``), is that it is shift-invariant. This comes
at cost of redundancy in the transform (the size of the output coefficients
is larger than the input).
When the following three conditions are true:
1. The wavelet is orthogonal
2. ``swt`` is called with ``norm=True``
3. ``swt`` is called with ``trim_approx=True``
the transform has the following additional properties that may be
desirable in applications:
1. energy is conserved
2. variance is partitioned across scales
When used with ``norm=True``, this transform is closely related to the
multiple-overlap DWT (MODWT) as popularized for time-series analysis,
although the underlying implementation is slightly different from the one
published in [1]_. Specifically, the implementation used here requires a
signal that is a multiple of ``2**level`` in length.
References
----------
.. [1] DB Percival and AT Walden. Wavelet Methods for Time Series Analysis.
Cambridge University Press, 2000.
"""
if not _have_c99_complex and np.iscomplexobj(data):
data = np.asarray(data)
kwargs = dict(wavelet=wavelet, level=level, start_level=start_level,
trim_approx=trim_approx, axis=axis, norm=norm)
coeffs_real = swt(data.real, **kwargs)
coeffs_imag = swt(data.imag, **kwargs)
if not trim_approx:
coeffs_cplx = []
for (cA_r, cD_r), (cA_i, cD_i) in zip(coeffs_real, coeffs_imag):
coeffs_cplx.append((cA_r + 1j*cA_i, cD_r + 1j*cD_i))
else:
coeffs_cplx = [cr + 1j*ci
for (cr, ci) in zip(coeffs_real, coeffs_imag)]
return coeffs_cplx
# accept array_like input; make a copy to ensure a contiguous array
dt = _check_dtype(data)
data = np.array(data, dtype=dt)
wavelet = _as_wavelet(wavelet)
if norm:
if not wavelet.orthogonal:
warnings.warn(
"norm=True, but the wavelet is not orthogonal: \n"
"\tThe conditions for energy preservation are not satisfied.")
wavelet = _rescale_wavelet_filterbank(wavelet, 1/np.sqrt(2))
if axis < 0:
axis = axis + data.ndim
if not 0 <= axis < data.ndim:
raise np.AxisError("Axis greater than data dimensions")
if level is None:
level = swt_max_level(data.shape[axis])
if data.ndim == 1:
ret = _swt(data, wavelet, level, start_level, trim_approx)
else:
ret = _swt_axis(data, wavelet, level, start_level, axis, trim_approx)
return ret
def iswt(coeffs, wavelet, norm=False, axis=-1):
"""
Multilevel 1D inverse discrete stationary wavelet transform.
Parameters
----------
coeffs : array_like
Coefficients list of tuples::
[(cAn, cDn), ..., (cA2, cD2), (cA1, cD1)]
where cA is approximation, cD is details. Index 1 corresponds to
``start_level`` from ``pywt.swt``.
wavelet : Wavelet object or name string
Wavelet to use
norm : bool, optional
Controls the normalization used by the inverse transform. This must
be set equal to the value that was used by ``pywt.swt`` to preserve the
energy of a round-trip transform.
Returns
-------
1D array of reconstructed data.
Examples
--------
>>> import pywt
>>> coeffs = pywt.swt([1,2,3,4,5,6,7,8], 'db2', level=2)
>>> pywt.iswt(coeffs, 'db2')
array([ 1., 2., 3., 4., 5., 6., 7., 8.])
"""
# copy to avoid modification of input data
# If swt was called with trim_approx=False, first element is a tuple
trim_approx = not isinstance(coeffs[0], (tuple, list))
cA = coeffs[0] if trim_approx else coeffs[0][0]
if cA.ndim > 1:
# convert to swtn coefficient format and call iswtn
if trim_approx:
coeffs_nd = [cA] + [{'d': d} for d in coeffs[1:]]
else:
coeffs_nd = [{'a': a, 'd': d} for a, d in coeffs]
return iswtn(coeffs_nd, wavelet, axes=(axis,), norm=norm)
elif axis != 0 and axis != -1:
raise np.AxisError("Axis greater than data dimensions")
if not _have_c99_complex and np.iscomplexobj(cA):
if trim_approx:
coeffs_real = [c.real for c in coeffs]
coeffs_imag = [c.imag for c in coeffs]
else:
coeffs_real = [(ca.real, cd.real) for ca, cd in coeffs]
coeffs_imag = [(ca.imag, cd.imag) for ca, cd in coeffs]
kwargs = dict(wavelet=wavelet, norm=norm)
y = iswt(coeffs_real, **kwargs)
return y + 1j * iswt(coeffs_imag, **kwargs)
if trim_approx:
coeffs = coeffs[1:]
if cA.ndim != 1:
raise ValueError("iswt only supports 1D data")
dt = _check_dtype(cA)
output = np.array(cA, dtype=dt, copy=True)
# num_levels, equivalent to the decomposition level, n
num_levels = len(coeffs)
wavelet = _as_wavelet(wavelet)
if norm:
wavelet = _rescale_wavelet_filterbank(wavelet, np.sqrt(2))
mode = Modes.from_object('periodization')
for j in range(num_levels, 0, -1):
step_size = int(pow(2, j-1))
last_index = step_size
if trim_approx:
cD = coeffs[-j]
else:
_, cD = coeffs[-j]
cD = np.asarray(cD, dtype=_check_dtype(cD))
if cD.dtype != output.dtype:
# upcast to a common dtype (float64 or complex128)
if output.dtype.kind == 'c' or cD.dtype.kind == 'c':
dtype = np.complex128
else:
dtype = np.float64
output = np.asarray(output, dtype=dtype)
cD = np.asarray(cD, dtype=dtype)
for first in range(last_index): # 0 to last_index - 1
# Getting the indices that we will transform
indices = np.arange(first, len(cD), step_size)
# select the even indices
even_indices = indices[0::2]
# select the odd indices
odd_indices = indices[1::2]
# perform the inverse dwt on the selected indices,
# making sure to use periodic boundary conditions
# Note: indexing with an array of ints returns a contiguous
# copy as required by idwt_single.
x1 = idwt_single(output[even_indices],
cD[even_indices],
wavelet, mode)
x2 = idwt_single(output[odd_indices],
cD[odd_indices],
wavelet, mode)
# perform a circular shift right
x2 = np.roll(x2, 1)
# average and insert into the correct indices
output[indices] = (x1 + x2)/2.
return output
def swt2(data, wavelet, level, start_level=0, axes=(-2, -1),
trim_approx=False, norm=False):
"""
Multilevel 2D stationary wavelet transform.
Parameters
----------
data : array_like
2D array with input data
wavelet : Wavelet object or name string, or 2-tuple of wavelets
Wavelet to use. This can also be a tuple of wavelets to apply per
axis in ``axes``.
level : int
The number of decomposition steps to perform.
start_level : int, optional
The level at which the decomposition will start (default: 0)
axes : 2-tuple of ints, optional
Axes over which to compute the SWT. Repeated elements are not allowed.
trim_approx : bool, optional
If True, approximation coefficients at the final level are retained.
norm : bool, optional
If True, transform is normalized so that the energy of the coefficients
will be equal to the energy of ``data``. In other words,
``np.linalg.norm(data.ravel())`` will equal the norm of the
concatenated transform coefficients when ``trim_approx`` is True.
Returns
-------
coeffs : list
Approximation and details coefficients (for ``start_level = m``).
If ``trim_approx`` is ``False``, approximation coefficients are
retained for all levels::
[
(cA_m+level,
(cH_m+level, cV_m+level, cD_m+level)
),
...,
(cA_m+1,
(cH_m+1, cV_m+1, cD_m+1)
),
(cA_m,
(cH_m, cV_m, cD_m)
)
]
where cA is approximation, cH is horizontal details, cV is
vertical details, cD is diagonal details and m is ``start_level``.
If ``trim_approx`` is ``True``, approximation coefficients are only
retained at the final level of decomposition. This matches the format
used by ``pywt.wavedec2``::
[
cA_m+level,
(cH_m+level, cV_m+level, cD_m+level),
...,
(cH_m+1, cV_m+1, cD_m+1),
(cH_m, cV_m, cD_m),
]
Notes
-----
The implementation here follows the "algorithm a-trous" and requires that
the signal length along the transformed axes be a multiple of ``2**level``.
If this is not the case, the user should pad up to an appropriate size
using a function such as ``numpy.pad``.
A primary benefit of this transform in comparison to its decimated
counterpart (``pywt.wavedecn``), is that it is shift-invariant. This comes
at cost of redundancy in the transform (the size of the output coefficients
is larger than the input).
When the following three conditions are true:
1. The wavelet is orthogonal
2. ``swt2`` is called with ``norm=True``
3. ``swt2`` is called with ``trim_approx=True``
the transform has the following additional properties that may be
desirable in applications:
1. energy is conserved
2. variance is partitioned across scales
"""
axes = tuple(axes)
data = np.asarray(data)
if len(axes) != 2:
raise ValueError("Expected 2 axes")
if len(axes) != len(set(axes)):
raise ValueError("The axes passed to swt2 must be unique.")
if data.ndim < len(np.unique(axes)):
raise ValueError("Input array has fewer dimensions than the specified "
"axes")
coefs = swtn(data, wavelet, level, start_level, axes, trim_approx, norm)
ret = []
if trim_approx:
ret.append(coefs[0])
coefs = coefs[1:]
for c in coefs:
if trim_approx:
ret.append((c['da'], c['ad'], c['dd']))
else:
ret.append((c['aa'], (c['da'], c['ad'], c['dd'])))
return ret
def iswt2(coeffs, wavelet, norm=False, axes=(-2, -1)):
"""
Multilevel 2D inverse discrete stationary wavelet transform.
Parameters
----------
coeffs : list
Approximation and details coefficients::
[
(cA_n,
(cH_n, cV_n, cD_n)
),
...,
(cA_2,
(cH_2, cV_2, cD_2)
),
(cA_1,
(cH_1, cV_1, cD_1)
)
]
where cA is approximation, cH is horizontal details, cV is
vertical details, cD is diagonal details and n is the number of
levels. Index 1 corresponds to ``start_level`` from ``pywt.swt2``.
wavelet : Wavelet object or name string, or 2-tuple of wavelets
Wavelet to use. This can also be a 2-tuple of wavelets to apply per
axis.
norm : bool, optional
Controls the normalization used by the inverse transform. This must
be set equal to the value that was used by ``pywt.swt2`` to preserve
the energy of a round-trip transform.
Returns
-------
2D array of reconstructed data.
Examples
--------
>>> import pywt
>>> coeffs = pywt.swt2([[1,2,3,4],[5,6,7,8],
... [9,10,11,12],[13,14,15,16]],
... 'db1', level=2)
>>> pywt.iswt2(coeffs, 'db1')
array([[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[ 13., 14., 15., 16.]])
"""
# If swt was called with trim_approx=False, first element is a tuple
trim_approx = not isinstance(coeffs[0], (tuple, list))
cA = coeffs[0] if trim_approx else coeffs[0][0]
if cA.ndim != 2 or axes != (-2, -1):
# convert to swtn coefficient format and call iswtn instead
if trim_approx:
coeffs_nd = [cA] + [{'da': h, 'ad': v, 'dd': d}
for h, v, d in coeffs[1:]]
else:
coeffs_nd = [{'aa': a, 'da': h, 'ad': v, 'dd': d}
for a, (h, v, d) in coeffs]
return iswtn(coeffs_nd, wavelet, axes=axes, norm=norm)
if not _have_c99_complex and np.iscomplexobj(cA):
if trim_approx:
coeffs_real = [cA.real]
coeffs_real += [(h.real, v.real, d.real) for h, v, d in coeffs[1:]]
coeffs_imag = [cA.imag]
coeffs_imag += [(h.imag, v.imag, d.imag) for h, v, d in coeffs[1:]]
else:
coeffs_real = [(a.real, (h.real, v.real, d.real))
for a, (h, v, d) in coeffs]
coeffs_imag = [(a.imag, (h.imag, v.imag, d.imag))
for a, (h, v, d) in coeffs]
kwargs = dict(wavelet=wavelet, norm=norm)
y = iswt2(coeffs_real, **kwargs)
return y + 1j * iswt2(coeffs_imag, **kwargs)
if trim_approx:
coeffs = coeffs[1:]
# copy to avoid modification of input data
dt = _check_dtype(cA)
output = np.array(cA, dtype=dt, copy=True)
if output.ndim != 2:
raise ValueError(
"iswt2 only supports 2D arrays. see iswtn for a general "
"n-dimensionsal ISWT")
# num_levels, equivalent to the decomposition level, n
num_levels = len(coeffs)
wavelets = _wavelets_per_axis(wavelet, axes=(0, 1))
if norm:
wavelets = [_rescale_wavelet_filterbank(wav, np.sqrt(2))
for wav in wavelets]
for j in range(num_levels):
step_size = int(pow(2, num_levels-j-1))
last_index = step_size
if trim_approx:
(cH, cV, cD) = coeffs[j]
else:
_, (cH, cV, cD) = coeffs[j]
# We are going to assume cH, cV, and cD are of equal size
if (cH.shape != cV.shape) or (cH.shape != cD.shape):
raise RuntimeError(
"Mismatch in shape of intermediate coefficient arrays")
# make sure output shares the common dtype
# (conversion of dtype for individual coeffs is handled within idwt2 )
common_dtype = np.result_type(*(
[dt, ] + [_check_dtype(c) for c in [cH, cV, cD]]))
if output.dtype != common_dtype:
output = output.astype(common_dtype)
for first_h in range(last_index): # 0 to last_index - 1
for first_w in range(last_index): # 0 to last_index - 1
# Getting the indices that we will transform
indices_h = slice(first_h, cH.shape[0], step_size)
indices_w = slice(first_w, cH.shape[1], step_size)
even_idx_h = slice(first_h, cH.shape[0], 2*step_size)
even_idx_w = slice(first_w, cH.shape[1], 2*step_size)
odd_idx_h = slice(first_h + step_size, cH.shape[0], 2*step_size)
odd_idx_w = slice(first_w + step_size, cH.shape[1], 2*step_size)
# perform the inverse dwt on the selected indices,
# making sure to use periodic boundary conditions
x1 = idwt2((output[even_idx_h, even_idx_w],
(cH[even_idx_h, even_idx_w],
cV[even_idx_h, even_idx_w],
cD[even_idx_h, even_idx_w])),
wavelets, 'periodization')
x2 = idwt2((output[even_idx_h, odd_idx_w],
(cH[even_idx_h, odd_idx_w],
cV[even_idx_h, odd_idx_w],
cD[even_idx_h, odd_idx_w])),
wavelets, 'periodization')
x3 = idwt2((output[odd_idx_h, even_idx_w],
(cH[odd_idx_h, even_idx_w],
cV[odd_idx_h, even_idx_w],
cD[odd_idx_h, even_idx_w])),
wavelets, 'periodization')
x4 = idwt2((output[odd_idx_h, odd_idx_w],
(cH[odd_idx_h, odd_idx_w],
cV[odd_idx_h, odd_idx_w],
cD[odd_idx_h, odd_idx_w])),
wavelets, 'periodization')
# perform a circular shifts
x2 = np.roll(x2, 1, axis=1)
x3 = np.roll(x3, 1, axis=0)
x4 = np.roll(x4, 1, axis=0)
x4 = np.roll(x4, 1, axis=1)
output[indices_h, indices_w] = (x1 + x2 + x3 + x4) / 4
return output
def swtn(data, wavelet, level, start_level=0, axes=None, trim_approx=False,
norm=False):
"""
n-dimensional stationary wavelet transform.
Parameters
----------
data : array_like
n-dimensional array with input data.
wavelet : Wavelet object or name string, or tuple of wavelets
Wavelet to use. This can also be a tuple of wavelets to apply per
axis in ``axes``.
level : int
The number of decomposition steps to perform.
start_level : int, optional
The level at which the decomposition will start (default: 0)
axes : sequence of ints, optional
Axes over which to compute the SWT. A value of ``None`` (the
default) selects all axes. Axes may not be repeated.
trim_approx : bool, optional
If True, approximation coefficients at the final level are retained.
norm : bool, optional
If True, transform is normalized so that the energy of the coefficients
will be equal to the energy of ``data``. In other words,
``np.linalg.norm(data.ravel())`` will equal the norm of the
concatenated transform coefficients when ``trim_approx`` is True.
Returns
-------
[{coeffs_level_n}, ..., {coeffs_level_1}]: list of dict
Results for each level are arranged in a dictionary, where the key
specifies the transform type on each dimension and value is a
n-dimensional coefficients array.
For example, for a 2D case the result at a given level will look
something like this::
{'aa': <coeffs> # A(LL) - approx. on 1st dim, approx. on 2nd dim
'ad': <coeffs> # V(LH) - approx. on 1st dim, det. on 2nd dim
'da': <coeffs> # H(HL) - det. on 1st dim, approx. on 2nd dim
'dd': <coeffs> # D(HH) - det. on 1st dim, det. on 2nd dim
}
For user-specified ``axes``, the order of the characters in the
dictionary keys map to the specified ``axes``.
If ``trim_approx`` is ``True``, the first element of the list contains
the array of approximation coefficients from the final level of
decomposition, while the remaining coefficient dictionaries contain
only detail coefficients. This matches the behavior of `pywt.wavedecn`.
Notes
-----
The implementation here follows the "algorithm a-trous" and requires that
the signal length along the transformed axes be a multiple of ``2**level``.
If this is not the case, the user should pad up to an appropriate size
using a function such as ``numpy.pad``.
A primary benefit of this transform in comparison to its decimated
counterpart (``pywt.wavedecn``), is that it is shift-invariant. This comes
at cost of redundancy in the transform (the size of the output coefficients
is larger than the input).
When the following three conditions are true:
1. The wavelet is orthogonal
2. ``swtn`` is called with ``norm=True``
3. ``swtn`` is called with ``trim_approx=True``
the transform has the following additional properties that may be
desirable in applications:
1. energy is conserved
2. variance is partitioned across scales
"""
data = np.asarray(data)
if not _have_c99_complex and np.iscomplexobj(data):
kwargs = dict(wavelet=wavelet, level=level, start_level=start_level,
trim_approx=trim_approx, axes=axes, norm=norm)
real = swtn(data.real, **kwargs)
imag = swtn(data.imag, **kwargs)
if trim_approx:
cplx = [real[0] + 1j * imag[0]]
offset = 1
else:
cplx = []
offset = 0
for rdict, idict in zip(real[offset:], imag[offset:]):
cplx.append(
dict((k, rdict[k] + 1j * idict[k]) for k in rdict.keys()))
return cplx
if data.dtype == np.dtype('object'):
raise TypeError("Input must be a numeric array-like")
if data.ndim < 1:
raise ValueError("Input data must be at least 1D")
if axes is None:
axes = range(data.ndim)
axes = [a + data.ndim if a < 0 else a for a in axes]
if any(a < 0 or a >= data.ndim for a in axes):
raise np.AxisError("Axis greater than data dimensions")
if len(axes) != len(set(axes)):
raise ValueError("The axes passed to swtn must be unique.")
num_axes = len(axes)
wavelets = _wavelets_per_axis(wavelet, axes)
if norm:
if not np.all([wav.orthogonal for wav in wavelets]):
warnings.warn(
"norm=True, but the wavelets used are not orthogonal: \n"
"\tThe conditions for energy preservation are not satisfied.")
wavelets = [_rescale_wavelet_filterbank(wav, 1/np.sqrt(2))
for wav in wavelets]
ret = []
for i in range(start_level, start_level + level):
coeffs = [('', data)]
for axis, wavelet in zip(axes, wavelets):
new_coeffs = []
for subband, x in coeffs:
cA, cD = _swt_axis(x, wavelet, level=1, start_level=i,
axis=axis)[0]
new_coeffs.extend([(subband + 'a', cA),
(subband + 'd', cD)])
coeffs = new_coeffs
coeffs = dict(coeffs)
ret.append(coeffs)
# data for the next level is the approximation coeffs from this level
data = coeffs['a' * num_axes]
if trim_approx:
coeffs.pop('a' * num_axes)
if trim_approx:
ret.append(data)
ret.reverse()
return ret
def iswtn(coeffs, wavelet, axes=None, norm=False):
"""
Multilevel nD inverse discrete stationary wavelet transform.
Parameters
----------
coeffs : list
[{coeffs_level_n}, ..., {coeffs_level_1}]: list of dict
wavelet : Wavelet object or name string, or tuple of wavelets
Wavelet to use. This can also be a tuple of wavelets to apply per
axis in ``axes``.
axes : sequence of ints, optional
Axes over which to compute the inverse SWT. Axes may not be repeated.
The default is ``None``, which means transform all axes
(``axes = range(data.ndim)``).
norm : bool, optional
Controls the normalization used by the inverse transform. This must
be set equal to the value that was used by ``pywt.swtn`` to preserve
the energy of a round-trip transform.
Returns
-------
nD array of reconstructed data.
Examples
--------
>>> import pywt
>>> coeffs = pywt.swtn([[1,2,3,4],[5,6,7,8],
... [9,10,11,12],[13,14,15,16]],
... 'db1', level=2)
>>> pywt.iswtn(coeffs, 'db1')
array([[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[ 13., 14., 15., 16.]])
"""
# key length matches the number of axes transformed
ndim_transform = max(len(key) for key in coeffs[-1].keys())
trim_approx = not isinstance(coeffs[0], dict)
cA = coeffs[0] if trim_approx else coeffs[0]['a'*ndim_transform]
if not _have_c99_complex and np.iscomplexobj(cA):
if trim_approx:
coeffs_real = [coeffs[0].real]
coeffs_imag = [coeffs[0].imag]
coeffs = coeffs[1:]
else:
coeffs_real = []
coeffs_imag = []
coeffs_real += [{k: v.real for k, v in c.items()} for c in coeffs]
coeffs_imag += [{k: v.imag for k, v in c.items()} for c in coeffs]
kwargs = dict(wavelet=wavelet, axes=axes, norm=norm)
y = iswtn(coeffs_real, **kwargs)
return y + 1j * iswtn(coeffs_imag, **kwargs)
if trim_approx:
coeffs = coeffs[1:]
# copy to avoid modification of input data
dt = _check_dtype(cA)
output = np.array(cA, dtype=dt, copy=True)
ndim = output.ndim
if axes is None:
axes = range(output.ndim)
axes = [a + ndim if a < 0 else a for a in axes]
if len(axes) != len(set(axes)):
raise ValueError("The axes passed to swtn must be unique.")
if ndim_transform != len(axes):
raise ValueError("The number of axes used in iswtn must match the "
"number of dimensions transformed in swtn.")
# num_levels, equivalent to the decomposition level, n
num_levels = len(coeffs)
wavelets = _wavelets_per_axis(wavelet, axes)
if norm:
wavelets = [_rescale_wavelet_filterbank(wav, np.sqrt(2))
for wav in wavelets]
# initialize various slice objects used in the loops below
# these will remain slice(None) only on axes that aren't transformed
indices = [slice(None), ]*ndim
even_indices = [slice(None), ]*ndim
odd_indices = [slice(None), ]*ndim
odd_even_slices = [slice(None), ]*ndim
for j in range(num_levels):
step_size = int(pow(2, num_levels-j-1))
last_index = step_size
if not trim_approx:
a = coeffs[j].pop('a'*ndim_transform) # will restore later
details = coeffs[j]
# make sure dtype matches the coarsest level approximation coefficients
common_dtype = np.result_type(*(
[dt, ] + [v.dtype for v in details.values()]))
if output.dtype != common_dtype:
output = output.astype(common_dtype)
# We assume all coefficient arrays are of equal size
shapes = [v.shape for k, v in details.items()]
if len(set(shapes)) != 1:
raise RuntimeError(
"Mismatch in shape of intermediate coefficient arrays")
# shape of a single coefficient array, excluding non-transformed axes
coeff_trans_shape = tuple([shapes[0][ax] for ax in axes])
# nested loop over all combinations of axis offsets at this level
for firsts in product(*([range(last_index), ]*ndim_transform)):
for first, sh, ax in zip(firsts, coeff_trans_shape, axes):
indices[ax] = slice(first, sh, step_size)
even_indices[ax] = slice(first, sh, 2*step_size)
odd_indices[ax] = slice(first+step_size, sh, 2*step_size)
# nested loop over all combinations of odd/even inidices
approx = output.copy()
output[tuple(indices)] = 0
ntransforms = 0
for odds in product(*([(0, 1), ]*ndim_transform)):
for o, ax in zip(odds, axes):
if o:
odd_even_slices[ax] = odd_indices[ax]
else:
odd_even_slices[ax] = even_indices[ax]
# extract the odd/even indices for all detail coefficients
details_slice = {}
for key, value in details.items():
details_slice[key] = value[tuple(odd_even_slices)]
details_slice['a'*ndim_transform] = approx[
tuple(odd_even_slices)]
# perform the inverse dwt on the selected indices,
# making sure to use periodic boundary conditions
x = idwtn(details_slice, wavelets, 'periodization', axes=axes)
for o, ax in zip(odds, axes):
# circular shift along any odd indexed axis
if o:
x = np.roll(x, 1, axis=ax)
output[tuple(indices)] += x
ntransforms += 1
output[tuple(indices)] /= ntransforms # normalize
if not trim_approx:
coeffs[j]['a'*ndim_transform] = a # restore approx coeffs to dict
return output
|