1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
|
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# Copyright (c) 2012-2016 The PyWavelets Developers
# <https://github.com/PyWavelets/pywt>
# See COPYING for license details.
"""1D and 2D Wavelet packet transform module."""
from __future__ import division, print_function, absolute_import
__all__ = ["BaseNode", "Node", "WaveletPacket", "Node2D", "WaveletPacket2D",
"NodeND", "WaveletPacketND"]
from itertools import product
from collections import OrderedDict
import numpy as np
from ._extensions._pywt import Wavelet, _check_dtype
from ._dwt import dwt, idwt, dwt_max_level
from ._multidim import dwt2, idwt2, dwtn, idwtn
def get_graycode_order(level, x='a', y='d'):
graycode_order = [x, y]
for i in range(level - 1):
graycode_order = [x + path for path in graycode_order] + \
[y + path for path in graycode_order[::-1]]
return graycode_order
class BaseNode(object):
"""
BaseNode for wavelet packet 1D and 2D tree nodes.
The BaseNode is a base class for `Node` and `Node2D`.
It should not be used directly unless creating a new transformation
type. It is included here to document the common interface of 1D
and 2D node and wavelet packet transform classes.
Parameters
----------
parent :
Parent node. If parent is None then the node is considered detached
(ie root).
data : 1D or 2D array
Data associated with the node. 1D or 2D numeric array, depending on the
transform type.
node_name :
A name identifying the coefficients type.
See `Node.node_name` and `Node2D.node_name`
for information on the accepted subnodes names.
"""
# PART_LEN and PARTS attributes that define path tokens for node[] lookup
# must be defined in subclasses.
PART_LEN = None
PARTS = None
def __init__(self, parent, data, node_name):
self.parent = parent
if parent is not None:
self.wavelet = parent.wavelet
self.mode = parent.mode
self.level = parent.level + 1
self._maxlevel = parent.maxlevel
self.path = parent.path + node_name
self.axes = parent.axes
else:
self.wavelet = None
self.mode = None
self.axes = None
self.path = ""
self.level = 0
# data - signal on level 0, coeffs on higher levels
self.data = data
# Need to retain original data size/shape so we can trim any excess
# boundary coefficients from the inverse transform.
if self.data is None:
self._data_shape = None
else:
self._data_shape = np.asarray(data).shape
self._init_subnodes()
def _init_subnodes(self):
for part in self.PARTS:
self._set_node(part, None)
def _create_subnode(self, part, data=None, overwrite=True):
raise NotImplementedError()
def _create_subnode_base(self, node_cls, part, data=None, overwrite=True,
**kwargs):
self._validate_node_name(part)
if not overwrite and self._get_node(part) is not None:
return self._get_node(part)
node = node_cls(self, data, part, **kwargs)
self._set_node(part, node)
return node
def _get_node(self, part):
return getattr(self, part)
def _set_node(self, part, node):
setattr(self, part, node)
def _delete_node(self, part):
self._set_node(part, None)
def _validate_node_name(self, part):
if part not in self.PARTS:
raise ValueError("Subnode name must be in [%s], not '%s'." %
(', '.join("'%s'" % p for p in self.PARTS), part))
@property
def path_tuple(self):
"""The path to the current node in tuple form.
The length of the tuple is equal to the number of decomposition levels.
"""
path = self.path
nlev = len(path)//self.PART_LEN
return tuple([path[(n-1)*self.PART_LEN:n*self.PART_LEN]
for n in range(1, nlev+1)])
def _evaluate_maxlevel(self, evaluate_from='parent'):
"""
Try to find the value of maximum decomposition level if it is not
specified explicitly.
Parameters
----------
evaluate_from : {'parent', 'subnodes'}
"""
assert evaluate_from in ('parent', 'subnodes')
if self._maxlevel is not None:
return self._maxlevel
elif self.data is not None:
return self.level + dwt_max_level(
min(self.data.shape), self.wavelet)
if evaluate_from == 'parent':
if self.parent is not None:
return self.parent._evaluate_maxlevel(evaluate_from)
elif evaluate_from == 'subnodes':
for node_name in self.PARTS:
node = getattr(self, node_name, None)
if node is not None:
level = node._evaluate_maxlevel(evaluate_from)
if level is not None:
return level
return None
@property
def maxlevel(self):
if self._maxlevel is not None:
return self._maxlevel
# Try getting the maxlevel from parents first
self._maxlevel = self._evaluate_maxlevel(evaluate_from='parent')
# If not found, check whether it can be evaluated from subnodes
if self._maxlevel is None:
self._maxlevel = self._evaluate_maxlevel(evaluate_from='subnodes')
return self._maxlevel
@property
def node_name(self):
return self.path[-self.PART_LEN:]
def decompose(self):
"""
Decompose node data creating DWT coefficients subnodes.
Performs Discrete Wavelet Transform on the `~BaseNode.data` and
returns transform coefficients.
Note
----
Descends to subnodes and recursively
calls `~BaseNode.reconstruct` on them.
"""
if self.level < self.maxlevel:
return self._decompose()
else:
raise ValueError("Maximum decomposition level reached.")
def _decompose(self):
raise NotImplementedError()
def reconstruct(self, update=False):
"""
Reconstruct node from subnodes.
Parameters
----------
update : bool, optional
If True, then reconstructed data replaces the current
node data (default: False).
Returns:
- original node data if subnodes do not exist
- IDWT of subnodes otherwise.
"""
if not self.has_any_subnode:
return self.data
return self._reconstruct(update)
def _reconstruct(self):
raise NotImplementedError() # override this in subclasses
def get_subnode(self, part, decompose=True):
"""
Returns subnode or None (see `decomposition` flag description).
Parameters
----------
part :
Subnode name
decompose : bool, optional
If the param is True and corresponding subnode does not
exist, the subnode will be created using coefficients
from the DWT decomposition of the current node.
(default: True)
"""
self._validate_node_name(part)
subnode = self._get_node(part)
if subnode is None and decompose and not self.is_empty:
self.decompose()
subnode = self._get_node(part)
return subnode
def __getitem__(self, path):
"""
Find node represented by the given path.
Similar to `~BaseNode.get_subnode` method with `decompose=True`, but
can access nodes on any level in the decomposition tree.
Parameters
----------
path : str
String composed of node names. See `Node.node_name` and
`Node2D.node_name` for node naming convention.
Notes
-----
If node does not exist yet, it will be created by decomposition of its
parent node.
"""
errmsg = ("Invalid path parameter type - expected string or "
"tuple of strings but got %s." % type(path))
if isinstance(path, tuple):
# concatenate tuple of strings into a single string
try:
path = ''.join(path)
except TypeError:
raise TypeError(errmsg)
if isinstance(path, str):
if (self.maxlevel is not None and
len(path) > self.maxlevel * self.PART_LEN):
raise IndexError("Path length is out of range.")
if path:
return self.get_subnode(path[0:self.PART_LEN], True)[
path[self.PART_LEN:]]
else:
return self
else:
raise TypeError(errmsg)
def __setitem__(self, path, data):
"""
Set node or node's data in the decomposition tree. Nodes are
identified by string `path`.
Parameters
----------
path : str
String composed of node names.
data : array or BaseNode subclass.
"""
if isinstance(path, str):
if (
self.maxlevel is not None and
len(self.path) + len(path) > self.maxlevel * self.PART_LEN
):
raise IndexError("Path length out of range.")
if path:
subnode = self.get_subnode(path[0:self.PART_LEN], False)
if subnode is None:
self._create_subnode(path[0:self.PART_LEN], None)
subnode = self.get_subnode(path[0:self.PART_LEN], False)
subnode[path[self.PART_LEN:]] = data
else:
if isinstance(data, BaseNode):
self.data = np.asarray(data.data)
else:
self.data = np.asarray(data)
# convert data to nearest supported dtype
dtype = _check_dtype(data)
if self.data.dtype != dtype:
self.data = self.data.astype(dtype)
else:
raise TypeError("Invalid path parameter type - expected string but"
" got %s." % type(path))
def __delitem__(self, path):
"""
Remove node from the tree.
Parameters
----------
path : str
String composed of node names.
"""
node = self[path]
# don't clear node value and subnodes (node may still exist outside
# the tree)
# # node._init_subnodes()
# # node.data = None
parent = node.parent
node.parent = None # TODO
if parent and node.node_name:
parent._delete_node(node.node_name)
@property
def is_empty(self):
return self.data is None
@property
def has_any_subnode(self):
for part in self.PARTS:
if self._get_node(part) is not None: # and not .is_empty
return True
return False
def get_leaf_nodes(self, decompose=False):
"""
Returns leaf nodes.
Parameters
----------
decompose : bool, optional
(default: True)
"""
result = []
def collect(node):
if node.level == node.maxlevel and not node.is_empty:
result.append(node)
return False
if not decompose and not node.has_any_subnode:
result.append(node)
return False
return True
self.walk(collect, decompose=decompose)
return result
def walk(self, func, args=(), kwargs=None, decompose=True):
"""
Traverses the decomposition tree and calls
``func(node, *args, **kwargs)`` on every node. If `func` returns True,
descending to subnodes will continue.
Parameters
----------
func : callable
Callable accepting `BaseNode` as the first param and
optional positional and keyword arguments
args :
func params
kwargs :
func keyword params
decompose : bool, optional
If True (default), the method will also try to decompose the tree
up to the `maximum level <BaseNode.maxlevel>`.
"""
if kwargs is None:
kwargs = {}
if func(self, *args, **kwargs) and self.level < self.maxlevel:
for part in self.PARTS:
subnode = self.get_subnode(part, decompose)
if subnode is not None:
subnode.walk(func, args, kwargs, decompose)
def walk_depth(self, func, args=(), kwargs=None, decompose=True):
"""
Walk tree and call func on every node starting from the bottom-most
nodes.
Parameters
----------
func : callable
Callable accepting :class:`BaseNode` as the first param and
optional positional and keyword arguments
args :
func params
kwargs :
func keyword params
decompose : bool, optional
(default: False)
"""
if kwargs is None:
kwargs = {}
if self.level < self.maxlevel:
for part in self.PARTS:
subnode = self.get_subnode(part, decompose)
if subnode is not None:
subnode.walk_depth(func, args, kwargs, decompose)
func(self, *args, **kwargs)
def __str__(self):
return self.path + ": " + str(self.data)
class Node(BaseNode):
"""
WaveletPacket tree node.
Subnodes are called `a` and `d`, just like approximation
and detail coefficients in the Discrete Wavelet Transform.
"""
A = 'a'
D = 'd'
PARTS = A, D
PART_LEN = 1
def _create_subnode(self, part, data=None, overwrite=True):
return self._create_subnode_base(node_cls=Node, part=part, data=data,
overwrite=overwrite)
def _decompose(self):
"""
See also
--------
dwt : for 1D Discrete Wavelet Transform output coefficients.
"""
if self.is_empty:
data_a, data_d = None, None
if self._get_node(self.A) is None:
self._create_subnode(self.A, data_a)
if self._get_node(self.D) is None:
self._create_subnode(self.D, data_d)
else:
data_a, data_d = dwt(self.data, self.wavelet, self.mode,
axis=self.axes)
self._create_subnode(self.A, data_a)
self._create_subnode(self.D, data_d)
return self._get_node(self.A), self._get_node(self.D)
def _reconstruct(self, update):
data_a, data_d = None, None
node_a, node_d = self._get_node(self.A), self._get_node(self.D)
if node_a is not None:
data_a = node_a.reconstruct() # TODO: (update) ???
if node_d is not None:
data_d = node_d.reconstruct() # TODO: (update) ???
if data_a is None and data_d is None:
raise ValueError("Node is a leaf node and cannot be reconstructed"
" from subnodes.")
else:
rec = idwt(data_a, data_d, self.wavelet, self.mode, axis=self.axes)
if self._data_shape is not None and (
rec.shape != self._data_shape):
rec = rec[tuple([slice(sz) for sz in self._data_shape])]
if update:
self.data = rec
return rec
class Node2D(BaseNode):
"""
WaveletPacket tree node.
Subnodes are called 'a' (LL), 'h' (HL), 'v' (LH) and 'd' (HH), like
approximation and detail coefficients in the 2D Discrete Wavelet Transform
"""
LL = 'a'
HL = 'h'
LH = 'v'
HH = 'd'
PARTS = LL, HL, LH, HH
PART_LEN = 1
def _create_subnode(self, part, data=None, overwrite=True):
return self._create_subnode_base(node_cls=Node2D, part=part, data=data,
overwrite=overwrite)
def _decompose(self):
"""
See also
--------
dwt2 : for 2D Discrete Wavelet Transform output coefficients.
"""
if self.is_empty:
data_ll, data_lh, data_hl, data_hh = None, None, None, None
else:
data_ll, (data_hl, data_lh, data_hh) =\
dwt2(self.data, self.wavelet, self.mode, axes=self.axes)
self._create_subnode(self.LL, data_ll)
self._create_subnode(self.LH, data_lh)
self._create_subnode(self.HL, data_hl)
self._create_subnode(self.HH, data_hh)
return (self._get_node(self.LL), self._get_node(self.HL),
self._get_node(self.LH), self._get_node(self.HH))
def _reconstruct(self, update):
data_ll, data_lh, data_hl, data_hh = None, None, None, None
node_ll, node_lh, node_hl, node_hh =\
self._get_node(self.LL), self._get_node(self.LH),\
self._get_node(self.HL), self._get_node(self.HH)
if node_ll is not None:
data_ll = node_ll.reconstruct()
if node_lh is not None:
data_lh = node_lh.reconstruct()
if node_hl is not None:
data_hl = node_hl.reconstruct()
if node_hh is not None:
data_hh = node_hh.reconstruct()
if (data_ll is None and data_lh is None and
data_hl is None and data_hh is None):
raise ValueError(
"Tree is missing data - all subnodes of `%s` node "
"are None. Cannot reconstruct node." % self.path
)
else:
coeffs = data_ll, (data_hl, data_lh, data_hh)
rec = idwt2(coeffs, self.wavelet, self.mode, axes=self.axes)
if self._data_shape is not None and (
rec.shape != self._data_shape):
rec = rec[tuple([slice(sz) for sz in self._data_shape])]
if update:
self.data = rec
return rec
def expand_2d_path(self, path):
expanded_paths = {
self.HH: 'hh',
self.HL: 'hl',
self.LH: 'lh',
self.LL: 'll'
}
return (''.join([expanded_paths[p][0] for p in path]),
''.join([expanded_paths[p][1] for p in path]))
class NodeND(BaseNode):
"""
WaveletPacket tree node.
Unlike Node and Node2D self.PARTS is a dictionary.
For 1D: self.PARTS has keys 'a' and 'd'
For 2D: self.PARTS has keys 'aa', 'ad', 'da', 'dd'
For 3D: self.PARTS has keys 'aaa', 'aad', 'ada', 'daa', ..., 'ddd'
Parameters
----------
parent :
Parent node. If parent is None then the node is considered detached
(ie root).
data : 1D or 2D array
Data associated with the node. 1D or 2D numeric array, depending on the
transform type.
node_name : string
A name identifying the coefficients type.
See `Node.node_name` and `Node2D.node_name`
for information on the accepted subnodes names.
ndim : int
The number of data dimensions.
ndim_transform : int
The number of dimensions that are to be transformed.
"""
def __init__(self, parent, data, node_name, ndim, ndim_transform):
super(NodeND, self).__init__(parent=parent, data=data,
node_name=node_name)
self.PART_LEN = ndim_transform
self.PARTS = OrderedDict()
for key in product(*(('ad', )*self.PART_LEN)):
self.PARTS[''.join(key)] = None
self.ndim = ndim
self.ndim_transform = ndim_transform
def _init_subnodes(self):
# need this empty so BaseNode's _init_subnodes isn't called during
# __init__. We use a dictionary for PARTS instead for the nd case.
pass
def _get_node(self, part):
return self.PARTS[part]
def _set_node(self, part, node):
if part not in self.PARTS:
raise ValueError("invalid part")
self.PARTS[part] = node
def _delete_node(self, part):
self._set_node(part, None)
def _validate_node_name(self, part):
if part not in self.PARTS:
raise ValueError(
"Subnode name must be in [%s], not '%s'." %
(', '.join("'%s'" % p for p in list(self.PARTS.keys())), part))
def _create_subnode(self, part, data=None, overwrite=True):
return self._create_subnode_base(node_cls=NodeND, part=part, data=data,
overwrite=overwrite, ndim=self.ndim,
ndim_transform=self.ndim_transform)
def _evaluate_maxlevel(self, evaluate_from='parent'):
"""
Try to find the value of maximum decomposition level if it is not
specified explicitly.
Parameters
----------
evaluate_from : {'parent', 'subnodes'}
"""
assert evaluate_from in ('parent', 'subnodes')
if self._maxlevel is not None:
return self._maxlevel
elif self.data is not None:
return self.level + dwt_max_level(
min(self.data.shape), self.wavelet)
if evaluate_from == 'parent':
if self.parent is not None:
return self.parent._evaluate_maxlevel(evaluate_from)
elif evaluate_from == 'subnodes':
for node_name, node in self.PARTS.items():
if node is not None:
level = node._evaluate_maxlevel(evaluate_from)
if level is not None:
return level
return None
def _decompose(self):
"""
See also
--------
dwt2 : for 2D Discrete Wavelet Transform output coefficients.
"""
if self.is_empty:
coefs = {key: None for key in self.PARTS.keys()}
else:
coefs = dwtn(self.data, self.wavelet, self.mode, axes=self.axes)
for key, data in coefs.items():
self._create_subnode(key, data)
return (self._get_node(key) for key in self.PARTS.keys())
def _reconstruct(self, update):
coeffs = {key: None for key in self.PARTS.keys()}
nnodes = 0
for key in self.PARTS.keys():
node = self._get_node(key)
if node is not None:
nnodes += 1
coeffs[key] = node.reconstruct()
if nnodes == 0:
raise ValueError(
"Tree is missing data - all subnodes of `%s` node "
"are None. Cannot reconstruct node." % self.path
)
else:
rec = idwtn(coeffs, self.wavelet, self.mode, axes=self.axes)
if update:
self.data = rec
return rec
class WaveletPacket(Node):
"""
Data structure representing Wavelet Packet decomposition of signal.
Parameters
----------
data : 1D ndarray
Original data (signal)
wavelet : Wavelet object or name string
Wavelet used in DWT decomposition and reconstruction
mode : str, optional
Signal extension mode for the `dwt` and `idwt` decomposition and
reconstruction functions.
maxlevel : int, optional
Maximum level of decomposition.
If None, it will be calculated based on the `wavelet` and `data`
length using `pywt.dwt_max_level`.
axis : int, optional
The axis to transform.
"""
def __init__(self, data, wavelet, mode='symmetric', maxlevel=None,
axis=-1):
super(WaveletPacket, self).__init__(None, data, "")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
self.wavelet = wavelet
self.mode = mode
self.axes = axis # self.axes is just an integer for 1D transforms
if data is not None:
data = np.asarray(data)
if self.axes < 0:
self.axes = self.axes + data.ndim
if not 0 <= self.axes < data.ndim:
raise ValueError("Axis greater than data dimensions")
self.data_size = data.shape
if maxlevel is None:
maxlevel = dwt_max_level(data.shape[self.axes], self.wavelet)
else:
self.data_size = None
self._maxlevel = maxlevel
def __reduce__(self):
return (WaveletPacket,
(self.data, self.wavelet, self.mode, self.maxlevel))
def reconstruct(self, update=True):
"""
Reconstruct data value using coefficients from subnodes.
Parameters
----------
update : bool, optional
If True (default), then data values will be replaced by
reconstruction values, also in subnodes.
"""
if self.has_any_subnode:
data = super(WaveletPacket, self).reconstruct(update)
if self.data_size is not None and (data.shape != self.data_size):
data = data[[slice(sz) for sz in self.data_size]]
if update:
self.data = data
return data
return self.data # return original data
def get_level(self, level, order="natural", decompose=True):
"""
Returns all nodes on the specified level.
Parameters
----------
level : int
Specifies decomposition `level` from which the nodes will be
collected.
order : {'natural', 'freq'}, optional
- "natural" - left to right in tree (default)
- "freq" - band ordered
decompose : bool, optional
If set then the method will try to decompose the data up
to the specified `level` (default: True).
Notes
-----
If nodes at the given level are missing (i.e. the tree is partially
decomposed) and `decompose` is set to False, only existing nodes
will be returned.
Frequency order (``order="freq"``) is also known as as sequency order
and "natural" order is sometimes referred to as Paley order. A detailed
discussion of these orderings is also given in [1]_, [2]_.
References
----------
..[1] M.V. Wickerhauser. Adapted Wavelet Analysis from Theory to
Software. Wellesley. Massachusetts: A K Peters. 1994.
..[2] D.B. Percival and A.T. Walden. Wavelet Methods for Time Series
Analysis. Cambridge University Press. 2000.
DOI:10.1017/CBO9780511841040
"""
if order not in ["natural", "freq"]:
raise ValueError("Invalid order: {}".format(order))
if level > self.maxlevel:
raise ValueError("The level cannot be greater than the maximum"
" decomposition level value (%d)" % self.maxlevel)
result = []
def collect(node):
if node.level == level:
result.append(node)
return False
return True
self.walk(collect, decompose=decompose)
if order == "natural":
return result
elif order == "freq":
result = dict((node.path, node) for node in result)
graycode_order = get_graycode_order(level)
return [result[path] for path in graycode_order if path in result]
else:
raise ValueError("Invalid order name - %s." % order)
class WaveletPacket2D(Node2D):
"""
Data structure representing 2D Wavelet Packet decomposition of signal.
Parameters
----------
data : 2D ndarray
Data associated with the node.
wavelet : Wavelet object or name string
Wavelet used in DWT decomposition and reconstruction
mode : str, optional
Signal extension mode for the `dwt` and `idwt` decomposition and
reconstruction functions.
maxlevel : int
Maximum level of decomposition.
If None, it will be calculated based on the `wavelet` and `data`
length using `pywt.dwt_max_level`.
axes : 2-tuple of ints, optional
The axes that will be transformed.
"""
def __init__(self, data, wavelet, mode='smooth', maxlevel=None,
axes=(-2, -1)):
super(WaveletPacket2D, self).__init__(None, data, "")
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
self.wavelet = wavelet
self.mode = mode
self.axes = tuple(axes)
if len(np.unique(self.axes)) != 2:
raise ValueError("Expected two unique axes.")
if data is not None:
data = np.asarray(data)
if data.ndim < 2:
raise ValueError(
"WaveletPacket2D requires data with 2 or more dimensions.")
self.data_size = data.shape
transform_size = [data.shape[ax] for ax in self.axes]
if maxlevel is None:
maxlevel = dwt_max_level(min(transform_size), self.wavelet)
else:
self.data_size = None
self._maxlevel = maxlevel
def __reduce__(self):
return (WaveletPacket2D,
(self.data, self.wavelet, self.mode, self.maxlevel))
def reconstruct(self, update=True):
"""
Reconstruct data using coefficients from subnodes.
Parameters
----------
update : bool, optional
If True (default) then the coefficients of the current node
and its subnodes will be replaced with values from reconstruction.
"""
if self.has_any_subnode:
data = super(WaveletPacket2D, self).reconstruct(update)
if self.data_size is not None and (data.shape != self.data_size):
data = data[[slice(sz) for sz in self.data_size]]
if update:
self.data = data
return data
return self.data # return original data
def get_level(self, level, order="natural", decompose=True):
"""
Returns all nodes from specified level.
Parameters
----------
level : int
Decomposition `level` from which the nodes will be
collected.
order : {'natural', 'freq'}, optional
If `natural` (default) a flat list is returned.
If `freq`, a 2d structure with rows and cols
sorted by corresponding dimension frequency of 2d
coefficient array (adapted from 1d case).
decompose : bool, optional
If set then the method will try to decompose the data up
to the specified `level` (default: True).
Notes
-----
Frequency order (``order="freq"``) is also known as as sequency order
and "natural" order is sometimes referred to as Paley order. A detailed
discussion of these orderings is also given in [1]_, [2]_.
References
----------
..[1] M.V. Wickerhauser. Adapted Wavelet Analysis from Theory to
Software. Wellesley. Massachusetts: A K Peters. 1994.
..[2] D.B. Percival and A.T. Walden. Wavelet Methods for Time Series
Analysis. Cambridge University Press. 2000.
DOI:10.1017/CBO9780511841040
"""
if order not in ["natural", "freq"]:
raise ValueError("Invalid order: {}".format(order))
if level > self.maxlevel:
raise ValueError("The level cannot be greater than the maximum"
" decomposition level value (%d)" % self.maxlevel)
result = []
def collect(node):
if node.level == level:
result.append(node)
return False
return True
self.walk(collect, decompose=decompose)
if order == "freq":
nodes = {}
for (row_path, col_path), node in [
(self.expand_2d_path(node.path), node) for node in result
]:
nodes.setdefault(row_path, {})[col_path] = node
graycode_order = get_graycode_order(level, x='l', y='h')
nodes = [nodes[path] for path in graycode_order if path in nodes]
result = []
for row in nodes:
result.append(
[row[path] for path in graycode_order if path in row]
)
return result
class WaveletPacketND(NodeND):
"""
Data structure representing ND Wavelet Packet decomposition of signal.
Parameters
----------
data : ND ndarray
Data associated with the node.
wavelet : Wavelet object or name string
Wavelet used in DWT decomposition and reconstruction
mode : str, optional
Signal extension mode for the `dwt` and `idwt` decomposition and
reconstruction functions.
maxlevel : int, optional
Maximum level of decomposition.
If None, it will be calculated based on the `wavelet` and `data`
length using `pywt.dwt_max_level`.
axes : tuple of int, optional
The axes to transform. The default value of `None` corresponds to all
axes.
"""
def __init__(self, data, wavelet, mode='smooth', maxlevel=None,
axes=None):
if (data is None) and (axes is None):
# ndim is required to create a NodeND object
raise ValueError("If data is None, axes must be specified")
# axes determines the number of transform dimensions
if axes is None:
axes = range(data.ndim)
elif np.isscalar(axes):
axes = (axes, )
axes = tuple(axes)
if len(np.unique(axes)) != len(axes):
raise ValueError("Expected a set of unique axes.")
ndim_transform = len(axes)
if data is not None:
data = np.asarray(data)
if data.ndim == 0:
raise ValueError("data must be at least 1D")
ndim = data.ndim
else:
ndim = len(axes)
super(WaveletPacketND, self).__init__(None, data, "", ndim,
ndim_transform)
if not isinstance(wavelet, Wavelet):
wavelet = Wavelet(wavelet)
self.wavelet = wavelet
self.mode = mode
self.axes = axes
self.ndim_transform = ndim_transform
if data is not None:
if data.ndim < len(axes):
raise ValueError("The number of axes exceeds the number of "
"data dimensions.")
self.data_size = data.shape
transform_size = [data.shape[ax] for ax in self.axes]
if maxlevel is None:
maxlevel = dwt_max_level(min(transform_size), self.wavelet)
else:
self.data_size = None
self._maxlevel = maxlevel
def reconstruct(self, update=True):
"""
Reconstruct data using coefficients from subnodes.
Parameters
----------
update : bool, optional
If True (default) then the coefficients of the current node
and its subnodes will be replaced with values from reconstruction.
"""
if self.has_any_subnode:
data = super(WaveletPacketND, self).reconstruct(update)
if self.data_size is not None and (data.shape != self.data_size):
data = data[[slice(sz) for sz in self.data_size]]
if update:
self.data = data
return data
return self.data # return original data
def get_level(self, level, decompose=True):
"""
Returns all nodes from specified level.
Parameters
----------
level : int
Decomposition `level` from which the nodes will be
collected.
decompose : bool, optional
If set then the method will try to decompose the data up
to the specified `level` (default: True).
"""
if level > self.maxlevel:
raise ValueError("The level cannot be greater than the maximum"
" decomposition level value (%d)" % self.maxlevel)
result = []
def collect(node):
if node.level == level:
result.append(node)
return False
return True
self.walk(collect, decompose=decompose)
return result
|