File: _wavelab_signals.py

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (259 lines) | stat: -rw-r--r-- 9,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# -*- coding:utf-8 -*-
from __future__ import division

import numpy as np

__all__ = ['demo_signal']

_implemented_signals = [
    'Blocks',
    'Bumps',
    'HeaviSine',
    'Doppler',
    'Ramp',
    'HiSine',
    'LoSine',
    'LinChirp',
    'TwoChirp',
    'QuadChirp',
    'MishMash',
    'WernerSorrows',
    'HypChirps',
    'LinChirps',
    'Chirps',
    'Gabor',
    'sineoneoverx',
    'Piece-Regular',
    'Piece-Polynomial',
    'Riemann']


def demo_signal(name='Bumps', n=None):
    """Simple 1D wavelet test functions.

    This function can generate a number of common 1D test signals used in
    papers by David Donoho and colleagues (e.g. [1]_) as well as the wavelet
    book by Stéphane Mallat [2]_.

    Parameters
    ----------
    name : {'Blocks', 'Bumps', 'HeaviSine', 'Doppler', ...}
        The type of test signal to generate (`name` is case-insensitive). If
        `name` is set to `'list'`, a list of the available test functions is
        returned.
    n : int or None
        The length of the test signal. This should be provided for all test
        signals except `'Gabor'` and `'sineoneoverx'` which have a fixed
        length.

    Returns
    -------
    f : np.ndarray
        Array of length ``n`` corresponding to the specified test signal type.

    References
    ----------
    .. [1] D.L. Donoho and I.M. Johnstone.  Ideal spatial adaptation by
           wavelet shrinkage. Biometrika, vol. 81, pp. 425–455, 1994.
    .. [2] S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way.
           Academic Press. 2009.

    Notes
    -----
    This function is a partial reimplementation of the `MakeSignal` function
    from the [Wavelab](https://statweb.stanford.edu/~wavelab/) toolbox. These
    test signals are provided with permission of Dr. Donoho to encourage
    reproducible research.

    """
    if name.lower() == 'list':
        return _implemented_signals

    if n is not None:
        if n < 1 or (n % 1) != 0:
            raise ValueError("n must be an integer >= 1")
        t = np.arange(1/n, 1 + 1/n, 1/n)

    # The following function types don't allow user-specified `n`.
    n_hard_coded = ['gabor', 'sineoneoverx']

    name = name.lower()
    if name in n_hard_coded and n is not None:
        raise ValueError(
            "Parameter n must be set to None when name is {}".format(name))
    elif n is None and name not in n_hard_coded:
        raise ValueError(
            "Parameter n must be provided when name is {}".format(name))

    if name == 'blocks':
        t0s = [.1, .13, .15, .23, .25, .4, .44, .65, .76, .78, .81]
        hs = [4, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2]
        f = 0
        for (t0, h) in zip(t0s, hs):
            f += h * (1 + np.sign(t - t0)) / 2
    elif name == 'bumps':
        t0s = [.1, .13, .15, .23, .25, .4, .44, .65, .76, .78, .81]
        hs = [4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2]
        ws = [.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005]
        f = 0
        for (t0, h, w) in zip(t0s, hs, ws):
            f += h / (1 + np.abs((t - t0) / w))**4
    elif name == 'heavisine':
        f = 4 * np.sin(4 * np.pi * t) - np.sign(t - 0.3) - np.sign(0.72 - t)
    elif name == 'doppler':
        f = np.sqrt(t * (1 - t)) * np.sin(2 * np.pi * 1.05 / (t + 0.05))
    elif name == 'ramp':
        f = t - (t >= .37)
    elif name == 'hisine':
        f = np.sin(np.pi * (n * .6902) * t)
    elif name == 'losine':
        f = np.sin(np.pi * (n * .3333) * t)
    elif name == 'linchirp':
        f = np.sin(np.pi * t * ((n * .500) * t))
    elif name == 'twochirp':
        f = np.sin(np.pi * t * (n * t)) + np.sin((np.pi / 3) * t * (n * t))
    elif name == 'quadchirp':
        f = np.sin((np.pi / 3) * t * (n * t**2))
    elif name == 'mishmash':  # QuadChirp + LinChirp + HiSine
        f = np.sin((np.pi / 3) * t * (n * t**2))
        f += np.sin(np.pi * (n * .6902) * t)
        f += np.sin(np.pi * t * (n * .125 * t))
    elif name == 'wernersorrows':
        f = np.sin(np.pi * t * (n / 2 * t**2))
        f = f + np.sin(np.pi * (n * .6902) * t)
        f = f + np.sin(np.pi * t * (n * t))
        pos = [.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81]
        hgt = [4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2]
        wth = [.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005]
        for p, h, w in zip(pos, hgt, wth):
            f += h / (1 + np.abs((t - p) / w))**4
    elif name == 'hypchirps':  # Hyperbolic Chirps of Mallat's book
        alpha = 15 * n * np.pi / 1024
        beta = 5 * n * np.pi / 1024
        t = np.arange(1.001, n + .001 + 1) / n
        f1 = np.zeros(n)
        f2 = np.zeros(n)
        f1 = np.sin(alpha / (.8 - t)) * (0.1 < t) * (t < 0.68)
        f2 = np.sin(beta / (.8 - t)) * (0.1 < t) * (t < 0.75)
        m = int(np.round(0.65 * n))
        p = m // 4
        envelope = np.ones(m)  # the rinp.sing cutoff function
        tmp = np.arange(1, p + 1)-np.ones(p)
        envelope[:p] = (1 + np.sin(-np.pi / 2 + tmp / (p - 1) * np.pi)) / 2
        envelope[m-p:m] = envelope[:p][::-1]
        env = np.zeros(n)
        env[int(np.ceil(n / 10)) - 1:m + int(np.ceil(n / 10)) - 1] = \
            envelope[:m]
        f = (f1 + f2) * env
    elif name == 'linchirps':  # Linear Chirps of Mallat's book
        b = 100 * n * np.pi / 1024
        a = 250 * n * np.pi / 1024
        t = np.arange(1, n + 1) / n
        A1 = np.sqrt((t - 1 / n) * (1 - t))
        f = A1 * (np.cos(a * t**2) + np.cos(b * t + a * t**2))
    elif name == 'chirps':  # Mixture of Chirps of Mallat's book
        t = np.arange(1, n + 1)/n * 10 * np.pi
        f1 = np.cos(t**2 * n / 1024)
        a = 30 * n / 1024
        t = np.arange(1, n + 1)/n * np.pi
        f2 = np.cos(a * (t**3))
        f2 = f2[::-1]
        ix = np.arange(-n, n + 1) / n * 20
        g = np.exp(-ix**2 * 4 * n / 1024)
        i1 = slice(n // 2, n // 2 + n)
        i2 = slice(n // 8, n // 8 + n)
        j = np.arange(1, n + 1) / n
        f3 = g[i1] * np.cos(50 * np.pi * j * n / 1024)
        f4 = g[i2] * np.cos(350 * np.pi * j * n / 1024)
        f = f1 + f2 + f3 + f4
        envelope = np.ones(n)  # the rinp.sing cutoff function
        tmp = np.arange(1, n // 8 + 1) - np.ones(n // 8)
        envelope[:n // 8] = (
            1 + np.sin(-np.pi / 2 + tmp / (n / 8 - 1) * np.pi)) / 2
        envelope[7 * n // 8:n] = envelope[:n // 8][::-1]
        f = f*envelope
    elif name == 'gabor':  # two modulated Gabor functions in Mallat's book
        n = 512
        t = np.arange(-n, n + 1)*5 / n
        j = np.arange(1, n + 1) / n
        g = np.exp(-t**2 * 20)
        i1 = slice(2*n // 4, 2 * n // 4 + n)
        i2 = slice(n // 4, n // 4 + n)
        f1 = 3 * g[i1] * np.exp(1j * (n // 16) * np.pi * j)
        f2 = 3 * g[i2] * np.exp(1j * (n // 4) * np.pi * j)
        f = f1 + f2
    elif name == 'sineoneoverx':  # np.sin(1/x) in Mallat's book
        n = 1024
        i1 = np.arange(-n + 1, n + 1, dtype=float)
        i1[i1 == 0] = 1 / 100
        i1 = i1 / (n - 1)
        f = np.sin(1.5 / i1)
        f = f[512:1536]
    elif name == 'piece-regular':
        f = np.zeros(n)
        n_12 = int(np.fix(n / 12))
        n_7 = int(np.fix(n / 7))
        n_5 = int(np.fix(n / 5))
        n_3 = int(np.fix(n / 3))
        n_2 = int(np.fix(n / 2))
        n_20 = int(np.fix(n / 20))
        f1 = -15 * demo_signal('bumps', n)
        t = np.arange(1, n_12 + 1) / n_12
        f2 = -np.exp(4 * t)
        t = np.arange(1, n_7 + 1) / n_7
        f5 = np.exp(4 * t)-np.exp(4)
        t = np.arange(1, n_3 + 1) / n_3
        fma = 6 / 40
        f6 = -70 * np.exp(-((t - 0.5) * (t - 0.5)) / (2 * fma**2))
        f[:n_7] = f6[:n_7]
        f[n_7:n_5] = 0.5 * f6[n_7:n_5]
        f[n_5:n_3] = f6[n_5:n_3]
        f[n_3:n_2] = f1[n_3:n_2]
        f[n_2:n_2 + n_12] = f2
        f[n_2 + 2 * n_12 - 1:n_2 + n_12 - 1:-1] = f2
        f[n_2 + 2 * n_12 + n_20:n_2 + 2 * n_12 + 3 * n_20] = -np.ones(
            n_2 + 2*n_12 + 3*n_20 - n_2 - 2*n_12 - n_20) * 25
        k = n_2 + 2 * n_12 + 3 * n_20
        f[k:k + n_7] = f5
        diff = n - 5 * n_5
        f[5 * n_5:n] = f[diff - 1::-1]
        # zero-mean
        bias = np.sum(f) / n
        f = bias - f
    elif name == 'piece-polynomial':
        f = np.zeros(n)
        n_5 = int(np.fix(n / 5))
        n_10 = int(np.fix(n / 10))
        n_20 = int(np.fix(n / 20))
        t = np.arange(1, n_5 + 1) / n_5
        f1 = 20 * (t**3 + t**2 + 4)
        f3 = 40 * (2 * t**3 + t) + 100
        f2 = 10 * t**3 + 45
        f4 = 16 * t**2 + 8 * t + 16
        f5 = 20 * (t + 4)
        f6 = np.ones(n_10) * 20
        f[:n_5] = f1
        f[2 * n_5 - 1:n_5 - 1:-1] = f2
        f[2 * n_5:3 * n_5] = f3
        f[3 * n_5:4 * n_5] = f4
        f[4 * n_5:5 * n_5] = f5[n_5::-1]
        diff = n - 5*n_5
        f[5 * n_5:n] = f[diff - 1::-1]
        f[n_20:n_20 + n_10] = np.ones(n_10) * 10
        f[n - n_10:n + n_20 - n_10] = np.ones(n_20) * 150
        # zero-mean
        bias = np.sum(f) / n
        f = f - bias
    elif name == 'riemann':
        # Riemann's Non-differentiable Function
        sqn = int(np.round(np.sqrt(n)))
        idx = np.arange(1, sqn + 1)
        idx *= idx
        f = np.zeros_like(t)
        f[idx - 1] = 1. / np.arange(1, sqn + 1)
        f = np.real(np.fft.ifft(f))
    else:
        raise ValueError(
            "unknown name: {}.  name must be one of: {}".format(
                name, _implemented_signals))
    return f