1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
# -*- coding:utf-8 -*-
from __future__ import division
import numpy as np
__all__ = ['demo_signal']
_implemented_signals = [
'Blocks',
'Bumps',
'HeaviSine',
'Doppler',
'Ramp',
'HiSine',
'LoSine',
'LinChirp',
'TwoChirp',
'QuadChirp',
'MishMash',
'WernerSorrows',
'HypChirps',
'LinChirps',
'Chirps',
'Gabor',
'sineoneoverx',
'Piece-Regular',
'Piece-Polynomial',
'Riemann']
def demo_signal(name='Bumps', n=None):
"""Simple 1D wavelet test functions.
This function can generate a number of common 1D test signals used in
papers by David Donoho and colleagues (e.g. [1]_) as well as the wavelet
book by Stéphane Mallat [2]_.
Parameters
----------
name : {'Blocks', 'Bumps', 'HeaviSine', 'Doppler', ...}
The type of test signal to generate (`name` is case-insensitive). If
`name` is set to `'list'`, a list of the available test functions is
returned.
n : int or None
The length of the test signal. This should be provided for all test
signals except `'Gabor'` and `'sineoneoverx'` which have a fixed
length.
Returns
-------
f : np.ndarray
Array of length ``n`` corresponding to the specified test signal type.
References
----------
.. [1] D.L. Donoho and I.M. Johnstone. Ideal spatial adaptation by
wavelet shrinkage. Biometrika, vol. 81, pp. 425–455, 1994.
.. [2] S. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way.
Academic Press. 2009.
Notes
-----
This function is a partial reimplementation of the `MakeSignal` function
from the [Wavelab](https://statweb.stanford.edu/~wavelab/) toolbox. These
test signals are provided with permission of Dr. Donoho to encourage
reproducible research.
"""
if name.lower() == 'list':
return _implemented_signals
if n is not None:
if n < 1 or (n % 1) != 0:
raise ValueError("n must be an integer >= 1")
t = np.arange(1/n, 1 + 1/n, 1/n)
# The following function types don't allow user-specified `n`.
n_hard_coded = ['gabor', 'sineoneoverx']
name = name.lower()
if name in n_hard_coded and n is not None:
raise ValueError(
"Parameter n must be set to None when name is {}".format(name))
elif n is None and name not in n_hard_coded:
raise ValueError(
"Parameter n must be provided when name is {}".format(name))
if name == 'blocks':
t0s = [.1, .13, .15, .23, .25, .4, .44, .65, .76, .78, .81]
hs = [4, -5, 3, -4, 5, -4.2, 2.1, 4.3, -3.1, 2.1, -4.2]
f = 0
for (t0, h) in zip(t0s, hs):
f += h * (1 + np.sign(t - t0)) / 2
elif name == 'bumps':
t0s = [.1, .13, .15, .23, .25, .4, .44, .65, .76, .78, .81]
hs = [4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2]
ws = [.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005]
f = 0
for (t0, h, w) in zip(t0s, hs, ws):
f += h / (1 + np.abs((t - t0) / w))**4
elif name == 'heavisine':
f = 4 * np.sin(4 * np.pi * t) - np.sign(t - 0.3) - np.sign(0.72 - t)
elif name == 'doppler':
f = np.sqrt(t * (1 - t)) * np.sin(2 * np.pi * 1.05 / (t + 0.05))
elif name == 'ramp':
f = t - (t >= .37)
elif name == 'hisine':
f = np.sin(np.pi * (n * .6902) * t)
elif name == 'losine':
f = np.sin(np.pi * (n * .3333) * t)
elif name == 'linchirp':
f = np.sin(np.pi * t * ((n * .500) * t))
elif name == 'twochirp':
f = np.sin(np.pi * t * (n * t)) + np.sin((np.pi / 3) * t * (n * t))
elif name == 'quadchirp':
f = np.sin((np.pi / 3) * t * (n * t**2))
elif name == 'mishmash': # QuadChirp + LinChirp + HiSine
f = np.sin((np.pi / 3) * t * (n * t**2))
f += np.sin(np.pi * (n * .6902) * t)
f += np.sin(np.pi * t * (n * .125 * t))
elif name == 'wernersorrows':
f = np.sin(np.pi * t * (n / 2 * t**2))
f = f + np.sin(np.pi * (n * .6902) * t)
f = f + np.sin(np.pi * t * (n * t))
pos = [.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81]
hgt = [4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2]
wth = [.005, .005, .006, .01, .01, .03, .01, .01, .005, .008, .005]
for p, h, w in zip(pos, hgt, wth):
f += h / (1 + np.abs((t - p) / w))**4
elif name == 'hypchirps': # Hyperbolic Chirps of Mallat's book
alpha = 15 * n * np.pi / 1024
beta = 5 * n * np.pi / 1024
t = np.arange(1.001, n + .001 + 1) / n
f1 = np.zeros(n)
f2 = np.zeros(n)
f1 = np.sin(alpha / (.8 - t)) * (0.1 < t) * (t < 0.68)
f2 = np.sin(beta / (.8 - t)) * (0.1 < t) * (t < 0.75)
m = int(np.round(0.65 * n))
p = m // 4
envelope = np.ones(m) # the rinp.sing cutoff function
tmp = np.arange(1, p + 1)-np.ones(p)
envelope[:p] = (1 + np.sin(-np.pi / 2 + tmp / (p - 1) * np.pi)) / 2
envelope[m-p:m] = envelope[:p][::-1]
env = np.zeros(n)
env[int(np.ceil(n / 10)) - 1:m + int(np.ceil(n / 10)) - 1] = \
envelope[:m]
f = (f1 + f2) * env
elif name == 'linchirps': # Linear Chirps of Mallat's book
b = 100 * n * np.pi / 1024
a = 250 * n * np.pi / 1024
t = np.arange(1, n + 1) / n
A1 = np.sqrt((t - 1 / n) * (1 - t))
f = A1 * (np.cos(a * t**2) + np.cos(b * t + a * t**2))
elif name == 'chirps': # Mixture of Chirps of Mallat's book
t = np.arange(1, n + 1)/n * 10 * np.pi
f1 = np.cos(t**2 * n / 1024)
a = 30 * n / 1024
t = np.arange(1, n + 1)/n * np.pi
f2 = np.cos(a * (t**3))
f2 = f2[::-1]
ix = np.arange(-n, n + 1) / n * 20
g = np.exp(-ix**2 * 4 * n / 1024)
i1 = slice(n // 2, n // 2 + n)
i2 = slice(n // 8, n // 8 + n)
j = np.arange(1, n + 1) / n
f3 = g[i1] * np.cos(50 * np.pi * j * n / 1024)
f4 = g[i2] * np.cos(350 * np.pi * j * n / 1024)
f = f1 + f2 + f3 + f4
envelope = np.ones(n) # the rinp.sing cutoff function
tmp = np.arange(1, n // 8 + 1) - np.ones(n // 8)
envelope[:n // 8] = (
1 + np.sin(-np.pi / 2 + tmp / (n / 8 - 1) * np.pi)) / 2
envelope[7 * n // 8:n] = envelope[:n // 8][::-1]
f = f*envelope
elif name == 'gabor': # two modulated Gabor functions in Mallat's book
n = 512
t = np.arange(-n, n + 1)*5 / n
j = np.arange(1, n + 1) / n
g = np.exp(-t**2 * 20)
i1 = slice(2*n // 4, 2 * n // 4 + n)
i2 = slice(n // 4, n // 4 + n)
f1 = 3 * g[i1] * np.exp(1j * (n // 16) * np.pi * j)
f2 = 3 * g[i2] * np.exp(1j * (n // 4) * np.pi * j)
f = f1 + f2
elif name == 'sineoneoverx': # np.sin(1/x) in Mallat's book
n = 1024
i1 = np.arange(-n + 1, n + 1, dtype=float)
i1[i1 == 0] = 1 / 100
i1 = i1 / (n - 1)
f = np.sin(1.5 / i1)
f = f[512:1536]
elif name == 'piece-regular':
f = np.zeros(n)
n_12 = int(np.fix(n / 12))
n_7 = int(np.fix(n / 7))
n_5 = int(np.fix(n / 5))
n_3 = int(np.fix(n / 3))
n_2 = int(np.fix(n / 2))
n_20 = int(np.fix(n / 20))
f1 = -15 * demo_signal('bumps', n)
t = np.arange(1, n_12 + 1) / n_12
f2 = -np.exp(4 * t)
t = np.arange(1, n_7 + 1) / n_7
f5 = np.exp(4 * t)-np.exp(4)
t = np.arange(1, n_3 + 1) / n_3
fma = 6 / 40
f6 = -70 * np.exp(-((t - 0.5) * (t - 0.5)) / (2 * fma**2))
f[:n_7] = f6[:n_7]
f[n_7:n_5] = 0.5 * f6[n_7:n_5]
f[n_5:n_3] = f6[n_5:n_3]
f[n_3:n_2] = f1[n_3:n_2]
f[n_2:n_2 + n_12] = f2
f[n_2 + 2 * n_12 - 1:n_2 + n_12 - 1:-1] = f2
f[n_2 + 2 * n_12 + n_20:n_2 + 2 * n_12 + 3 * n_20] = -np.ones(
n_2 + 2*n_12 + 3*n_20 - n_2 - 2*n_12 - n_20) * 25
k = n_2 + 2 * n_12 + 3 * n_20
f[k:k + n_7] = f5
diff = n - 5 * n_5
f[5 * n_5:n] = f[diff - 1::-1]
# zero-mean
bias = np.sum(f) / n
f = bias - f
elif name == 'piece-polynomial':
f = np.zeros(n)
n_5 = int(np.fix(n / 5))
n_10 = int(np.fix(n / 10))
n_20 = int(np.fix(n / 20))
t = np.arange(1, n_5 + 1) / n_5
f1 = 20 * (t**3 + t**2 + 4)
f3 = 40 * (2 * t**3 + t) + 100
f2 = 10 * t**3 + 45
f4 = 16 * t**2 + 8 * t + 16
f5 = 20 * (t + 4)
f6 = np.ones(n_10) * 20
f[:n_5] = f1
f[2 * n_5 - 1:n_5 - 1:-1] = f2
f[2 * n_5:3 * n_5] = f3
f[3 * n_5:4 * n_5] = f4
f[4 * n_5:5 * n_5] = f5[n_5::-1]
diff = n - 5*n_5
f[5 * n_5:n] = f[diff - 1::-1]
f[n_20:n_20 + n_10] = np.ones(n_10) * 10
f[n - n_10:n + n_20 - n_10] = np.ones(n_20) * 150
# zero-mean
bias = np.sum(f) / n
f = f - bias
elif name == 'riemann':
# Riemann's Non-differentiable Function
sqn = int(np.round(np.sqrt(n)))
idx = np.arange(1, sqn + 1)
idx *= idx
f = np.zeros_like(t)
f[idx - 1] = 1. / np.arange(1, sqn + 1)
f = np.real(np.fft.ifft(f))
else:
raise ValueError(
"unknown name: {}. name must be one of: {}".format(
name, _implemented_signals))
return f
|