File: test__pywt.py

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (170 lines) | stat: -rw-r--r-- 5,469 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python

from __future__ import division, print_function, absolute_import

import numpy as np
from numpy.testing import assert_allclose, assert_, assert_raises

import pywt


def test_upcoef_reconstruct():
    data = np.arange(3)
    a = pywt.downcoef('a', data, 'haar')
    d = pywt.downcoef('d', data, 'haar')

    rec = (pywt.upcoef('a', a, 'haar', take=3) +
           pywt.upcoef('d', d, 'haar', take=3))
    assert_allclose(rec, data)


def test_downcoef_multilevel():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(16)
    nlevels = 3
    # calling with level=1 nlevels times
    a1 = r.copy()
    for i in range(nlevels):
        a1 = pywt.downcoef('a', a1, 'haar', level=1)
    # call with level=nlevels once
    a3 = pywt.downcoef('a', r, 'haar', level=nlevels)
    assert_allclose(a1, a3)


def test_downcoef_complex():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(16) + 1j * rstate.randn(16)
    nlevels = 3
    a = pywt.downcoef('a', r, 'haar', level=nlevels)
    a_ref = pywt.downcoef('a', r.real, 'haar', level=nlevels)
    a_ref = a_ref + 1j * pywt.downcoef('a', r.imag, 'haar', level=nlevels)
    assert_allclose(a, a_ref)


def test_downcoef_errs():
    # invalid part string (not 'a' or 'd')
    assert_raises(ValueError, pywt.downcoef, 'f', np.ones(16), 'haar')


def test_compare_downcoef_coeffs():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(16)
    # compare downcoef against wavedec outputs
    for nlevels in [1, 2, 3]:
        for wavelet in pywt.wavelist():
            if wavelet in ['cmor', 'shan', 'fbsp']:
                # skip these CWT families to avoid warnings
                continue
            wavelet = pywt.DiscreteContinuousWavelet(wavelet)
            if isinstance(wavelet, pywt.Wavelet):
                max_level = pywt.dwt_max_level(r.size, wavelet.dec_len)
                if nlevels <= max_level:
                    a = pywt.downcoef('a', r, wavelet, level=nlevels)
                    d = pywt.downcoef('d', r, wavelet, level=nlevels)
                    coeffs = pywt.wavedec(r, wavelet, level=nlevels)
                    assert_allclose(a, coeffs[0])
                    assert_allclose(d, coeffs[1])


def test_upcoef_multilevel():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(4)
    nlevels = 3
    # calling with level=1 nlevels times
    a1 = r.copy()
    for i in range(nlevels):
        a1 = pywt.upcoef('a', a1, 'haar', level=1)
    # call with level=nlevels once
    a3 = pywt.upcoef('a', r, 'haar', level=nlevels)
    assert_allclose(a1, a3)


def test_upcoef_complex():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(4) + 1j*rstate.randn(4)
    nlevels = 3
    a = pywt.upcoef('a', r, 'haar', level=nlevels)
    a_ref = pywt.upcoef('a', r.real, 'haar', level=nlevels)
    a_ref = a_ref + 1j*pywt.upcoef('a', r.imag, 'haar', level=nlevels)
    assert_allclose(a, a_ref)


def test_upcoef_errs():
    # invalid part string (not 'a' or 'd')
    assert_raises(ValueError, pywt.upcoef, 'f', np.ones(4), 'haar')


def test_upcoef_and_downcoef_1d_only():
    # upcoef and downcoef raise a ValueError if data.ndim > 1d
    for ndim in [2, 3]:
        data = np.ones((8, )*ndim)
        assert_raises(ValueError, pywt.downcoef, 'a', data, 'haar')
        assert_raises(ValueError, pywt.upcoef, 'a', data, 'haar')


def test_wavelet_repr():
    from pywt._extensions import _pywt
    wavelet = _pywt.Wavelet('sym8')

    repr_wavelet = eval(wavelet.__repr__())

    assert_(wavelet.__repr__() == repr_wavelet.__repr__())


def test_dwt_max_level():
    assert_(pywt.dwt_max_level(16, 2) == 4)
    assert_(pywt.dwt_max_level(16, 8) == 1)
    assert_(pywt.dwt_max_level(16, 9) == 1)
    assert_(pywt.dwt_max_level(16, 10) == 0)
    assert_(pywt.dwt_max_level(16, np.int8(10)) == 0)
    assert_(pywt.dwt_max_level(16, 10.) == 0)
    assert_(pywt.dwt_max_level(16, 18) == 0)

    # accepts discrete Wavelet object or string as well
    assert_(pywt.dwt_max_level(32, pywt.Wavelet('sym5')) == 1)
    assert_(pywt.dwt_max_level(32, 'sym5') == 1)

    # string input that is not a discrete wavelet
    assert_raises(ValueError, pywt.dwt_max_level, 16, 'mexh')

    # filter_len must be an integer >= 2
    assert_raises(ValueError, pywt.dwt_max_level, 16, 1)
    assert_raises(ValueError, pywt.dwt_max_level, 16, -1)
    assert_raises(ValueError, pywt.dwt_max_level, 16, 3.3)


def test_ContinuousWavelet_errs():
    assert_raises(ValueError, pywt.ContinuousWavelet, 'qwertz')


def test_ContinuousWavelet_repr():
    from pywt._extensions import _pywt
    wavelet = _pywt.ContinuousWavelet('gaus2')

    repr_wavelet = eval(wavelet.__repr__())

    assert_(wavelet.__repr__() == repr_wavelet.__repr__())


def test_wavelist():
    for name in pywt.wavelist(family='coif'):
        assert_(name.startswith('coif'))

    assert_('cgau7' in pywt.wavelist(kind='continuous'))
    assert_('sym20' in pywt.wavelist(kind='discrete'))
    assert_(len(pywt.wavelist(kind='continuous')) +
            len(pywt.wavelist(kind='discrete')) ==
            len(pywt.wavelist(kind='all')))

    assert_raises(ValueError, pywt.wavelist, kind='foobar')


def test_wavelet_errormsgs():
    try:
        pywt.Wavelet('gaus1')
    except ValueError as e:
        assert_(e.args[0].startswith('The `Wavelet` class'))
    try:
        pywt.Wavelet('cmord')
    except ValueError as e:
        assert_(e.args[0] == "Invalid wavelet name 'cmord'.")