1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
"""
Test used to verify PyWavelets Discrete Wavelet Transform computation
accuracy against MathWorks Wavelet Toolbox.
"""
from __future__ import division, print_function, absolute_import
import numpy as np
import pytest
from numpy.testing import assert_
import pywt
from pywt._pytest import (uses_pymatbridge, uses_precomputed, size_set)
from pywt._pytest import matlab_result_dict_dwt as matlab_result_dict
# list of mode names in pywt and matlab
modes = [('zero', 'zpd'),
('constant', 'sp0'),
('symmetric', 'sym'),
('reflect', 'symw'),
('periodic', 'ppd'),
('smooth', 'sp1'),
('periodization', 'per'),
# TODO: Now have implemented asymmetric modes too.
# Would be nice to update the Matlab data to test these as well.
('antisymmetric', 'asym'),
('antireflect', 'asymw'),
]
families = ('db', 'sym', 'coif', 'bior', 'rbio')
wavelets = sum([pywt.wavelist(name) for name in families], [])
def _get_data_sizes(w):
""" Return the sizes to test for wavelet w. """
if size_set == 'full':
data_sizes = list(range(w.dec_len, 40)) + \
[100, 200, 500, 1000, 50000]
else:
data_sizes = (w.dec_len, w.dec_len + 1)
return data_sizes
@uses_pymatbridge
@pytest.mark.slow
def test_accuracy_pymatbridge():
Matlab = pytest.importorskip("pymatbridge.Matlab")
mlab = Matlab()
rstate = np.random.RandomState(1234)
# max RMSE (was 1.0e-10, is reduced to 5.0e-5 due to different coefficients)
epsilon = 5.0e-5
epsilon_pywt_coeffs = 1.0e-10
mlab.start()
try:
for wavelet in wavelets:
w = pywt.Wavelet(wavelet)
mlab.set_variable('wavelet', wavelet)
for N in _get_data_sizes(w):
data = rstate.randn(N)
mlab.set_variable('data', data)
for pmode, mmode in modes:
ma, md = _compute_matlab_result(data, wavelet, mmode, mlab)
_check_accuracy(data, w, pmode, ma, md, wavelet, epsilon)
ma, md = _load_matlab_result_pywt_coeffs(data, wavelet, mmode)
_check_accuracy(data, w, pmode, ma, md, wavelet, epsilon_pywt_coeffs)
finally:
mlab.stop()
@uses_precomputed
@pytest.mark.slow
def test_accuracy_precomputed():
# Keep this specific random seed to match the precomputed Matlab result.
rstate = np.random.RandomState(1234)
# max RMSE (was 1.0e-10, is reduced to 5.0e-5 due to different coefficients)
epsilon = 5.0e-5
epsilon_pywt_coeffs = 1.0e-10
for wavelet in wavelets:
w = pywt.Wavelet(wavelet)
for N in _get_data_sizes(w):
data = rstate.randn(N)
for pmode, mmode in modes:
ma, md = _load_matlab_result(data, wavelet, mmode)
_check_accuracy(data, w, pmode, ma, md, wavelet, epsilon)
ma, md = _load_matlab_result_pywt_coeffs(data, wavelet, mmode)
_check_accuracy(data, w, pmode, ma, md, wavelet, epsilon_pywt_coeffs)
def _compute_matlab_result(data, wavelet, mmode, mlab):
""" Compute the result using MATLAB.
This function assumes that the Matlab variables `wavelet` and `data` have
already been set externally.
"""
if np.any((wavelet == np.array(['coif6', 'coif7', 'coif8', 'coif9', 'coif10', 'coif11', 'coif12', 'coif13', 'coif14', 'coif15', 'coif16', 'coif17'])),axis=0):
w = pywt.Wavelet(wavelet)
mlab.set_variable('Lo_D', w.dec_lo)
mlab.set_variable('Hi_D', w.dec_hi)
mlab_code = ("[ma, md] = dwt(data, Lo_D, Hi_D, 'mode', '%s');" % mmode)
else:
mlab_code = "[ma, md] = dwt(data, wavelet, 'mode', '%s');" % mmode
res = mlab.run_code(mlab_code)
if not res['success']:
raise RuntimeError("Matlab failed to execute the provided code. "
"Check that the wavelet toolbox is installed.")
# need np.asarray because sometimes the output is a single float64
ma = np.asarray(mlab.get_variable('ma'))
md = np.asarray(mlab.get_variable('md'))
return ma, md
def _load_matlab_result(data, wavelet, mmode):
""" Load the precomputed result.
"""
N = len(data)
ma_key = '_'.join([mmode, wavelet, str(N), 'ma'])
md_key = '_'.join([mmode, wavelet, str(N), 'md'])
if (ma_key not in matlab_result_dict) or \
(md_key not in matlab_result_dict):
raise KeyError(
"Precompted Matlab result not found for wavelet: "
"{0}, mode: {1}, size: {2}".format(wavelet, mmode, N))
ma = matlab_result_dict[ma_key]
md = matlab_result_dict[md_key]
return ma, md
def _load_matlab_result_pywt_coeffs(data, wavelet, mmode):
""" Load the precomputed result.
"""
N = len(data)
ma_key = '_'.join([mmode, wavelet, str(N), 'ma_pywtCoeffs'])
md_key = '_'.join([mmode, wavelet, str(N), 'md_pywtCoeffs'])
if (ma_key not in matlab_result_dict) or \
(md_key not in matlab_result_dict):
raise KeyError(
"Precompted Matlab result not found for wavelet: "
"{0}, mode: {1}, size: {2}".format(wavelet, mmode, N))
ma = matlab_result_dict[ma_key]
md = matlab_result_dict[md_key]
return ma, md
def _check_accuracy(data, w, pmode, ma, md, wavelet, epsilon):
# PyWavelets result
pa, pd = pywt.dwt(data, w, pmode)
# calculate error measures
rms_a = np.sqrt(np.mean((pa - ma) ** 2))
rms_d = np.sqrt(np.mean((pd - md) ** 2))
msg = ('[RMS_A > EPSILON] for Mode: %s, Wavelet: %s, '
'Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_a))
assert_(rms_a < epsilon, msg=msg)
msg = ('[RMS_D > EPSILON] for Mode: %s, Wavelet: %s, '
'Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_d))
assert_(rms_d < epsilon, msg=msg)
|