1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
"""
Test used to verify PyWavelets Continuous Wavelet Transform computation
accuracy against MathWorks Wavelet Toolbox.
"""
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
import pytest
from numpy.testing import assert_
import pywt
from pywt._pytest import (uses_pymatbridge, uses_precomputed, size_set,
matlab_result_dict_cwt)
families = ('gaus', 'mexh', 'morl', 'cgau', 'shan', 'fbsp', 'cmor')
wavelets = sum([pywt.wavelist(name) for name in families], [])
def _get_data_sizes(w):
""" Return the sizes to test for wavelet w. """
if size_set == 'full':
data_sizes = list(range(100, 101)) + \
[100, 200, 500, 1000, 50000]
else:
data_sizes = (1000, 1000 + 1)
return data_sizes
def _get_scales(w):
""" Return the scales to test for wavelet w. """
if size_set == 'full':
scales = (1, np.arange(1, 3), np.arange(1, 4), np.arange(1, 5))
else:
scales = (1, np.arange(1, 3))
return scales
@uses_pymatbridge # skip this case if precomputed results are used instead
@pytest.mark.slow
def test_accuracy_pymatbridge_cwt():
Matlab = pytest.importorskip("pymatbridge.Matlab")
mlab = Matlab()
rstate = np.random.RandomState(1234)
# max RMSE (was 1.0e-10, is reduced to 5.0e-5 due to different coefficients)
epsilon = 1e-15
epsilon_psi = 1e-15
mlab.start()
try:
for wavelet in wavelets:
with warnings.catch_warnings():
warnings.simplefilter('ignore', FutureWarning)
w = pywt.ContinuousWavelet(wavelet)
if np.any((wavelet == np.array(['shan', 'cmor'])),axis=0):
mlab.set_variable('wavelet', wavelet+str(w.bandwidth_frequency)+'-'+str(w.center_frequency))
elif wavelet == 'fbsp':
mlab.set_variable('wavelet', wavelet+str(w.fbsp_order)+'-'+str(w.bandwidth_frequency)+'-'+str(w.center_frequency))
else:
mlab.set_variable('wavelet', wavelet)
mlab_code = ("psi = wavefun(wavelet,10)")
res = mlab.run_code(mlab_code)
psi = np.asarray(mlab.get_variable('psi'))
_check_accuracy_psi(w, psi, wavelet, epsilon_psi)
for N in _get_data_sizes(w):
data = rstate.randn(N)
mlab.set_variable('data', data)
for scales in _get_scales(w):
coefs = _compute_matlab_result(data, wavelet, scales, mlab)
_check_accuracy(data, w, scales, coefs, wavelet, epsilon)
finally:
mlab.stop()
@uses_precomputed # skip this case if pymatbridge + Matlab are being used
@pytest.mark.slow
def test_accuracy_precomputed_cwt():
# Keep this specific random seed to match the precomputed Matlab result.
rstate = np.random.RandomState(1234)
# has to be improved
epsilon = 2e-15
epsilon32 = 1e-5
epsilon_psi = 1e-15
for wavelet in wavelets:
with warnings.catch_warnings():
warnings.simplefilter('ignore', FutureWarning)
w = pywt.ContinuousWavelet(wavelet)
w32 = pywt.ContinuousWavelet(wavelet,dtype=np.float32)
psi = _load_matlab_result_psi(wavelet)
_check_accuracy_psi(w, psi, wavelet, epsilon_psi)
for N in _get_data_sizes(w):
data = rstate.randn(N)
data32 = data.astype(np.float32)
scales_count = 0
for scales in _get_scales(w):
scales_count += 1
coefs = _load_matlab_result(data, wavelet, scales_count)
_check_accuracy(data, w, scales, coefs, wavelet, epsilon)
_check_accuracy(data32, w32, scales, coefs, wavelet, epsilon32)
def _compute_matlab_result(data, wavelet, scales, mlab):
""" Compute the result using MATLAB.
This function assumes that the Matlab variables `wavelet` and `data` have
already been set externally.
"""
mlab.set_variable('scales', scales)
mlab_code = ("coefs = cwt(data, scales, wavelet)")
res = mlab.run_code(mlab_code)
if not res['success']:
raise RuntimeError("Matlab failed to execute the provided code. "
"Check that the wavelet toolbox is installed.")
# need np.asarray because sometimes the output is a single float64
coefs = np.asarray(mlab.get_variable('coefs'))
return coefs
def _load_matlab_result(data, wavelet, scales):
""" Load the precomputed result.
"""
N = len(data)
coefs_key = '_'.join([str(scales), wavelet, str(N), 'coefs'])
if (coefs_key not in matlab_result_dict_cwt):
raise KeyError(
"Precompted Matlab result not found for wavelet: "
"{0}, mode: {1}, size: {2}".format(wavelet, scales, N))
coefs = matlab_result_dict_cwt[coefs_key]
return coefs
def _load_matlab_result_psi(wavelet):
""" Load the precomputed result.
"""
psi_key = '_'.join([wavelet, 'psi'])
if (psi_key not in matlab_result_dict_cwt):
raise KeyError(
"Precompted Matlab psi result not found for wavelet: "
"{0}}".format(wavelet))
psi = matlab_result_dict_cwt[psi_key]
return psi
def _check_accuracy(data, w, scales, coefs, wavelet, epsilon):
# PyWavelets result
coefs_pywt, freq = pywt.cwt(data, scales, w)
# coefs from Matlab are from R2012a which is missing the complex conjugate
# as shown in Eq. 2 of Torrence and Compo. We take the complex conjugate of
# the precomputed Matlab result to account for this.
coefs = np.conj(coefs)
# calculate error measures
err = coefs_pywt - coefs
rms = np.real(np.sqrt(np.mean(np.conj(err) * err)))
msg = ('[RMS > EPSILON] for Scale: %s, Wavelet: %s, '
'Length: %d, rms=%.3g' % (scales, wavelet, len(data), rms))
assert_(rms < epsilon, msg=msg)
def _check_accuracy_psi(w, psi, wavelet, epsilon):
# PyWavelets result
psi_pywt, x = w.wavefun(length=1024)
# calculate error measures
err = psi_pywt.flatten() - psi.flatten()
rms = np.real(np.sqrt(np.mean(np.conj(err) * err)))
msg = ('[RMS > EPSILON] for Wavelet: %s, '
'rms=%.3g' % (wavelet, rms))
assert_(rms < epsilon, msg=msg)
|