1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
#!/usr/bin/env python
import numpy as np
import pytest
from numpy.testing import assert_allclose
import pywt
from pywt import data
# tolerances used in accuracy comparisons
tol_single = 1e-6
tol_double = 1e-13
atol = 1e-7
####
# 1d mra tests
####
@pytest.mark.parametrize('wavelet', ['db2', 'sym4', 'coif5'])
@pytest.mark.parametrize('transform', ['dwt', 'swt'])
@pytest.mark.parametrize('mode', pywt.Modes.modes)
@pytest.mark.parametrize(
'dtype', ['float32', 'float64', 'complex64', 'complex128']
)
def test_mra_roundtrip(wavelet, transform, mode, dtype):
x = data.ecg()[:64].astype(dtype)
if x.dtype.kind == 'c':
# fill some data for the imaginary channel
x.imag = x[::-1].real
if transform == 'swt':
# swt mode only supports periodization
if mode != 'periodization':
with pytest.raises(ValueError):
pywt.mra(x, wavelet, transform=transform, mode=mode)
return
coeffs = pywt.mra(x, wavelet, transform=transform, mode=mode)
assert isinstance(coeffs, list)
assert isinstance(coeffs[0], np.ndarray)
# assert all(isinstance(coeffs[i], dict) for i in range(1, len(coeffs)))
y = pywt.imra(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
@pytest.mark.parametrize('wavelet', ['rbio1.3', 'bior2.4'])
@pytest.mark.parametrize('transform', ['dwt', 'swt'])
def test_mra_warns_on_non_orthogonal(wavelet, transform):
dtype = np.float64
x = data.ecg()[:64].astype(dtype)
assert not pywt.Wavelet(wavelet).orthogonal
if transform == 'swt':
# bi-orthogonal wavelets raise a warning for SWT case
msg = 'norm=True, but the wavelet is not orthogonal'
with pytest.warns(UserWarning, match=msg):
coeffs = pywt.mra(x, wavelet, transform=transform)
else:
coeffs = pywt.mra(x, wavelet, transform=transform)
y = pywt.imra(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
@pytest.mark.parametrize('axis', [0, -1, 1, 2, -3])
@pytest.mark.parametrize('ndim', [1, 2, 3])
@pytest.mark.parametrize('transform', ['dwt', 'swt'])
@pytest.mark.parametrize('dtype', [np.float64, np.complex128])
def test_mra_axis(transform, ndim, axis, dtype):
# Test transforms over a specific axis of 1D, 2D or 3D data
if ndim == 1:
x = data.ecg()[:64]
elif ndim == 2:
x = data.camera()[:64, :32]
elif ndim == 3:
x = data.camera()[:48, :8]
x = np.stack((x,) * 8, axis=-1)
x = x.astype(dtype, copy=False)
# out of range axis
if axis < -x.ndim or axis >= x.ndim:
with pytest.raises(np.AxisError):
pywt.mra(x, 'db1', transform=transform, axis=axis)
return
coeffs = pywt.mra(x, 'db1', transform=transform, axis=axis)
y = pywt.imra(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
####
# 2d mra tests
####
@pytest.mark.parametrize('wavelet', ['db2', 'sym4', 'coif5'])
@pytest.mark.parametrize('transform', ['dwt2', 'swt2'])
@pytest.mark.parametrize('mode', pywt.Modes.modes)
@pytest.mark.parametrize(
'dtype', ['float32', 'float64', 'complex64', 'complex128']
)
def test_mra2_roundtrip(wavelet, transform, mode, dtype):
x = data.camera()[:32, :16].astype(dtype, copy=False)
if x.dtype.kind == 'c':
# fill some data for the imaginary channel
x.imag = x[::-1, :].real
if transform == 'swt2':
# swt mode only supports periodization
if mode != 'periodization':
with pytest.raises(ValueError):
pywt.mra2(x, wavelet, transform=transform, mode=mode)
return
coeffs = pywt.mra2(x, wavelet, transform=transform, mode=mode)
assert isinstance(coeffs, list)
assert isinstance(coeffs[0], np.ndarray)
# assert all(isinstance(coeffs[i], dict) for i in range(1, len(coeffs)))
y = pywt.imra2(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
@pytest.mark.parametrize('wavelet', ['rbio1.3', 'bior2.4'])
@pytest.mark.parametrize('transform', ['dwt2', 'swt2'])
def test_mra2_warns_on_non_orthogonal(wavelet, transform):
dtype = np.float64
x = data.camera()[:32, :8].astype(dtype, copy=False)
assert not pywt.Wavelet(wavelet).orthogonal
if transform == 'swt2':
# bi-orthogonal wavelets raise a warning for SWT case
msg = 'norm=True, but the wavelets used are not orthogonal'
with pytest.warns(UserWarning, match=msg):
coeffs = pywt.mra2(x, wavelet, transform=transform)
else:
coeffs = pywt.mra2(x, wavelet, transform=transform)
y = pywt.imra2(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
@pytest.mark.parametrize('transform', ['dwt2', 'swt2'])
@pytest.mark.parametrize('ndim', [2, 3])
@pytest.mark.parametrize('axes', [(0, 1), (-2, -1), (0, 2), (-3, 1), (0, 4)])
@pytest.mark.parametrize('dtype', [np.float64, np.complex128])
def test_mra2_axes(transform, axes, ndim, dtype):
# Test transforms over various axes of 2D or 3D data.
x = data.camera()[:32, :16].astype(dtype, copy=False)
if ndim == 3:
x = np.stack((x,) * 8, axis=-1)
# out of range axis
if any([axis < -x.ndim or axis >= x.ndim for axis in axes]):
with pytest.raises(np.AxisError):
pywt.mra2(x, 'db1', transform=transform, axes=axes)
return
coeffs = pywt.mra2(x, 'db1', transform=transform, axes=axes)
y = pywt.imra2(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
####
# nd mra tests
####
@pytest.mark.parametrize('wavelet', ['sym2', ])
@pytest.mark.parametrize('transform', ['dwtn', 'swtn'])
@pytest.mark.parametrize('mode', pywt.Modes.modes)
@pytest.mark.parametrize(
'dtype', ['float32', 'float64', 'complex64', 'complex128']
)
@pytest.mark.parametrize('ndim', [1, 2, 3])
def test_mran_roundtrip(wavelet, transform, mode, dtype, ndim):
if ndim == 1:
x = data.ecg()[:48].astype(dtype, copy=False)
elif ndim == 2:
x = data.camera()[:16, :8].astype(dtype, copy=False)
elif ndim == 3:
x = data.camera()[:16, :8].astype(dtype, copy=False)
x = np.stack((x,) * 8, axis=-1)
if x.dtype.kind == 'c':
# fill some data for the imaginary channel
x.imag = x[::-1, ...].real
if transform == 'swtn':
# swt mode only supports periodization
if mode != 'periodization':
with pytest.raises(ValueError):
pywt.mran(x, wavelet, transform=transform, mode=mode)
return
coeffs = pywt.mran(x, wavelet, transform=transform, mode=mode)
assert isinstance(coeffs, list)
assert isinstance(coeffs[0], np.ndarray)
# assert all(isinstance(coeffs[i], dict) for i in range(1, len(coeffs)))
y = pywt.imran(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
@pytest.mark.parametrize('wavelet', ['rbio1.3', 'bior2.4'])
@pytest.mark.parametrize('transform', ['dwtn', 'swtn'])
def test_mran_warns_on_non_orthogonal(wavelet, transform):
dtype = np.float64
x = data.camera()[:32, :8].astype(dtype, copy=False)
assert not pywt.Wavelet(wavelet).orthogonal
if transform == 'swtn':
# bi-orthogonal wavelets raise a warning for SWT case
msg = 'norm=True, but the wavelets used are not orthogonal'
with pytest.warns(UserWarning, match=msg):
coeffs = pywt.mran(x, wavelet, transform=transform)
else:
coeffs = pywt.mran(x, wavelet, transform=transform)
y = pywt.imran(coeffs)
rtol = tol_single if x.real.dtype.kind == 'f' else tol_double
assert_allclose(x, y, rtol=rtol, atol=rtol)
@pytest.mark.parametrize(
'axes', [(0, 1), (-2, -1), (0, 2), (-3, 1), (0, 4), (-3, -2, -1),
(0, 2, 1), (0, 5, 1), (0,), (1,), (2,), (-2,), (-3,), (-4,)])
@pytest.mark.parametrize('transform', ['dwtn', 'swtn'])
def test_mran_axes(axes, transform):
# Test with transforms over 1, 2 or 3 axes of 3d data.
# Cases with out of range axes are also tested
dtype = np.float64
x = data.camera()[:32, :16].astype(dtype, copy=False)
x3d = np.stack((x,) * 8, axis=-1)
# out of range axis
if any([axis < -x.ndim or axis >= x.ndim for axis in axes]):
with pytest.raises(np.AxisError):
pywt.mran(x, 'db1', transform='dwtn', axes=axes)
return
coeffs = pywt.mran(x3d, 'db1', transform='dwtn', axes=axes)
y = pywt.imran(coeffs)
rtol = tol_single if x3d.real.dtype.kind == 'f' else tol_double
assert_allclose(x3d, y, rtol=rtol, atol=rtol)
|