1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
import numpy as np
from itertools import combinations
from numpy.testing import assert_allclose, assert_, assert_raises, assert_equal
import pywt
# Check that float32, float64, complex64, complex128 are preserved.
# Other real types get converted to float64.
# complex256 gets converted to complex128
dtypes_in = [np.int8, np.float16, np.float32, np.float64, np.complex64,
np.complex128]
dtypes_out = [np.float64, np.float32, np.float32, np.float64, np.complex64,
np.complex128]
# test complex256 as well if it is available
try:
dtypes_in += [np.complex256, ]
dtypes_out += [np.complex128, ]
except AttributeError:
pass
def test_dwtn_input():
# Array-like must be accepted
pywt.dwtn([1, 2, 3, 4], 'haar')
# Others must not
data = dict()
assert_raises(TypeError, pywt.dwtn, data, 'haar')
# Must be at least 1D
assert_raises(ValueError, pywt.dwtn, 2, 'haar')
def test_3D_reconstruct():
data = np.array([
[[0, 4, 1, 5, 1, 4],
[0, 5, 26, 3, 2, 1],
[5, 8, 2, 33, 4, 9],
[2, 5, 19, 4, 19, 1]],
[[1, 5, 1, 2, 3, 4],
[7, 12, 6, 52, 7, 8],
[2, 12, 3, 52, 6, 8],
[5, 2, 6, 78, 12, 2]]])
wavelet = pywt.Wavelet('haar')
for mode in pywt.Modes.modes:
d = pywt.dwtn(data, wavelet, mode=mode)
assert_allclose(data, pywt.idwtn(d, wavelet, mode=mode),
rtol=1e-13, atol=1e-13)
def test_dwdtn_idwtn_allwavelets():
rstate = np.random.RandomState(1234)
r = rstate.randn(16, 16)
# test 2D case only for all wavelet types
wavelist = pywt.wavelist()
if 'dmey' in wavelist:
wavelist.remove('dmey')
for wavelet in wavelist:
if wavelet in ['cmor', 'shan', 'fbsp']:
# skip these CWT families to avoid warnings
continue
if isinstance(pywt.DiscreteContinuousWavelet(wavelet), pywt.Wavelet):
for mode in pywt.Modes.modes:
coeffs = pywt.dwtn(r, wavelet, mode=mode)
assert_allclose(pywt.idwtn(coeffs, wavelet, mode=mode),
r, rtol=1e-7, atol=1e-7)
def test_stride():
wavelet = pywt.Wavelet('haar')
for dtype in ('float32', 'float64'):
data = np.array([[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]],
dtype=dtype)
for mode in pywt.Modes.modes:
expected = pywt.dwtn(data, wavelet)
strided = np.ones((3, 12), dtype=data.dtype)
strided[::-1, ::2] = data
strided_dwtn = pywt.dwtn(strided[::-1, ::2], wavelet)
for key in expected.keys():
assert_allclose(strided_dwtn[key], expected[key])
def test_byte_offset():
wavelet = pywt.Wavelet('haar')
for dtype in ('float32', 'float64'):
data = np.array([[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]],
dtype=dtype)
for mode in pywt.Modes.modes:
expected = pywt.dwtn(data, wavelet)
padded = np.ones((3, 6), dtype=np.dtype({'data': (data.dtype, 0),
'pad': ('byte', data.dtype.itemsize)},
align=True))
padded[:] = data
padded_dwtn = pywt.dwtn(padded['data'], wavelet)
for key in expected.keys():
assert_allclose(padded_dwtn[key], expected[key])
def test_3D_reconstruct_complex():
# All dimensions even length so `take` does not need to be specified
data = np.array([
[[0, 4, 1, 5, 1, 4],
[0, 5, 26, 3, 2, 1],
[5, 8, 2, 33, 4, 9],
[2, 5, 19, 4, 19, 1]],
[[1, 5, 1, 2, 3, 4],
[7, 12, 6, 52, 7, 8],
[2, 12, 3, 52, 6, 8],
[5, 2, 6, 78, 12, 2]]])
data = data + 1j
wavelet = pywt.Wavelet('haar')
d = pywt.dwtn(data, wavelet)
# idwtn creates even-length shapes (2x dwtn size)
original_shape = tuple([slice(None, s) for s in data.shape])
assert_allclose(data, pywt.idwtn(d, wavelet)[original_shape],
rtol=1e-13, atol=1e-13)
def test_idwtn_idwt2():
data = np.array([
[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]])
wavelet = pywt.Wavelet('haar')
LL, (HL, LH, HH) = pywt.dwt2(data, wavelet)
d = {'aa': LL, 'da': HL, 'ad': LH, 'dd': HH}
for mode in pywt.Modes.modes:
assert_allclose(pywt.idwt2((LL, (HL, LH, HH)), wavelet, mode=mode),
pywt.idwtn(d, wavelet, mode=mode),
rtol=1e-14, atol=1e-14)
def test_idwtn_idwt2_complex():
data = np.array([
[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]])
data = data + 1j
wavelet = pywt.Wavelet('haar')
LL, (HL, LH, HH) = pywt.dwt2(data, wavelet)
d = {'aa': LL, 'da': HL, 'ad': LH, 'dd': HH}
for mode in pywt.Modes.modes:
assert_allclose(pywt.idwt2((LL, (HL, LH, HH)), wavelet, mode=mode),
pywt.idwtn(d, wavelet, mode=mode),
rtol=1e-14, atol=1e-14)
def test_idwtn_missing():
# Test to confirm missing data behave as zeroes
data = np.array([
[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]])
wavelet = pywt.Wavelet('haar')
coefs = pywt.dwtn(data, wavelet)
# No point removing zero, or all
for num_missing in range(1, len(coefs)):
for missing in combinations(coefs.keys(), num_missing):
missing_coefs = coefs.copy()
for key in missing:
del missing_coefs[key]
LL = missing_coefs.get('aa', None)
HL = missing_coefs.get('da', None)
LH = missing_coefs.get('ad', None)
HH = missing_coefs.get('dd', None)
assert_allclose(pywt.idwt2((LL, (HL, LH, HH)), wavelet),
pywt.idwtn(missing_coefs, 'haar'), atol=1e-15)
def test_idwtn_all_coeffs_None():
coefs = dict(aa=None, da=None, ad=None, dd=None)
assert_raises(ValueError, pywt.idwtn, coefs, 'haar')
def test_error_on_invalid_keys():
data = np.array([
[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]])
wavelet = pywt.Wavelet('haar')
LL, (HL, LH, HH) = pywt.dwt2(data, wavelet)
# unexpected key
d = {'aa': LL, 'da': HL, 'ad': LH, 'dd': HH, 'ff': LH}
assert_raises(ValueError, pywt.idwtn, d, wavelet)
# mismatched key lengths
d = {'a': LL, 'da': HL, 'ad': LH, 'dd': HH}
assert_raises(ValueError, pywt.idwtn, d, wavelet)
def test_error_mismatched_size():
data = np.array([
[0, 4, 1, 5, 1, 4],
[0, 5, 6, 3, 2, 1],
[2, 5, 19, 4, 19, 1]])
wavelet = pywt.Wavelet('haar')
LL, (HL, LH, HH) = pywt.dwt2(data, wavelet)
# Pass/fail depends on first element being shorter than remaining ones so
# set 3/4 to an incorrect size to maximize chances. Order of dict items
# is random so may not trigger on every test run. Dict is constructed
# inside idwtn function so no use using an OrderedDict here.
LL = LL[:, :-1]
LH = LH[:, :-1]
HH = HH[:, :-1]
d = {'aa': LL, 'da': HL, 'ad': LH, 'dd': HH}
assert_raises(ValueError, pywt.idwtn, d, wavelet)
def test_dwt2_idwt2_dtypes():
wavelet = pywt.Wavelet('haar')
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
x = np.ones((4, 4), dtype=dt_in)
errmsg = "wrong dtype returned for {0} input".format(dt_in)
cA, (cH, cV, cD) = pywt.dwt2(x, wavelet)
assert_(cA.dtype == cH.dtype == cV.dtype == cD.dtype,
"dwt2: " + errmsg)
x_roundtrip = pywt.idwt2((cA, (cH, cV, cD)), wavelet)
assert_(x_roundtrip.dtype == dt_out, "idwt2: " + errmsg)
def test_dwtn_axes():
data = np.array([[0, 1, 2, 3],
[1, 1, 1, 1],
[1, 4, 2, 8]])
data = data + 1j*data # test with complex data
coefs = pywt.dwtn(data, 'haar', axes=(1,))
expected_a = list(map(lambda x: pywt.dwt(x, 'haar')[0], data))
assert_equal(coefs['a'], expected_a)
expected_d = list(map(lambda x: pywt.dwt(x, 'haar')[1], data))
assert_equal(coefs['d'], expected_d)
coefs = pywt.dwtn(data, 'haar', axes=(1, 1))
expected_aa = list(map(lambda x: pywt.dwt(x, 'haar')[0], expected_a))
assert_equal(coefs['aa'], expected_aa)
expected_ad = list(map(lambda x: pywt.dwt(x, 'haar')[1], expected_a))
assert_equal(coefs['ad'], expected_ad)
def test_idwtn_axes():
data = np.array([[0, 1, 2, 3],
[1, 1, 1, 1],
[1, 4, 2, 8]])
data = data + 1j*data # test with complex data
coefs = pywt.dwtn(data, 'haar', axes=(1, 1))
assert_allclose(pywt.idwtn(coefs, 'haar', axes=(1, 1)), data, atol=1e-14)
def test_idwt2_none_coeffs():
data = np.array([[0, 1, 2, 3],
[1, 1, 1, 1],
[1, 4, 2, 8]])
data = data + 1j*data # test with complex data
cA, (cH, cV, cD) = pywt.dwt2(data, 'haar', axes=(1, 1))
# verify setting coefficients to None is the same as zeroing them
cD = np.zeros_like(cD)
result_zeros = pywt.idwt2((cA, (cH, cV, cD)), 'haar', axes=(1, 1))
cD = None
result_none = pywt.idwt2((cA, (cH, cV, cD)), 'haar', axes=(1, 1))
assert_equal(result_zeros, result_none)
def test_idwtn_none_coeffs():
data = np.array([[0, 1, 2, 3],
[1, 1, 1, 1],
[1, 4, 2, 8]])
data = data + 1j*data # test with complex data
coefs = pywt.dwtn(data, 'haar', axes=(1, 1))
# verify setting coefficients to None is the same as zeroing them
coefs['dd'] = np.zeros_like(coefs['dd'])
result_zeros = pywt.idwtn(coefs, 'haar', axes=(1, 1))
coefs['dd'] = None
result_none = pywt.idwtn(coefs, 'haar', axes=(1, 1))
assert_equal(result_zeros, result_none)
def test_idwt2_axes():
data = np.array([[0, 1, 2, 3],
[1, 1, 1, 1],
[1, 4, 2, 8]])
coefs = pywt.dwt2(data, 'haar', axes=(1, 1))
assert_allclose(pywt.idwt2(coefs, 'haar', axes=(1, 1)), data, atol=1e-14)
# too many axes
assert_raises(ValueError, pywt.idwt2, coefs, 'haar', axes=(0, 1, 1))
def test_idwt2_axes_subsets():
data = np.array(np.random.standard_normal((4, 4, 4)))
# test all combinations of 2 out of 3 axes transformed
for axes in combinations((0, 1, 2), 2):
coefs = pywt.dwt2(data, 'haar', axes=axes)
assert_allclose(pywt.idwt2(coefs, 'haar', axes=axes), data, atol=1e-14)
def test_idwtn_axes_subsets():
data = np.array(np.random.standard_normal((4, 4, 4, 4)))
# test all combinations of 3 out of 4 axes transformed
for axes in combinations((0, 1, 2, 3), 3):
coefs = pywt.dwtn(data, 'haar', axes=axes)
assert_allclose(pywt.idwtn(coefs, 'haar', axes=axes), data, atol=1e-14)
def test_negative_axes():
data = np.array([[0, 1, 2, 3],
[1, 1, 1, 1],
[1, 4, 2, 8]])
coefs1 = pywt.dwtn(data, 'haar', axes=(1, 1))
coefs2 = pywt.dwtn(data, 'haar', axes=(-1, -1))
assert_equal(coefs1, coefs2)
rec1 = pywt.idwtn(coefs1, 'haar', axes=(1, 1))
rec2 = pywt.idwtn(coefs1, 'haar', axes=(-1, -1))
assert_equal(rec1, rec2)
def test_dwtn_idwtn_dtypes():
wavelet = pywt.Wavelet('haar')
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
x = np.ones((4, 4), dtype=dt_in)
errmsg = "wrong dtype returned for {0} input".format(dt_in)
coeffs = pywt.dwtn(x, wavelet)
for k, v in coeffs.items():
assert_(v.dtype == dt_out, "dwtn: " + errmsg)
x_roundtrip = pywt.idwtn(coeffs, wavelet)
assert_(x_roundtrip.dtype == dt_out, "idwtn: " + errmsg)
def test_idwtn_mixed_complex_dtype():
rstate = np.random.RandomState(0)
x = rstate.randn(8, 8, 8)
x = x + 1j*x
coeffs = pywt.dwtn(x, 'db2')
x_roundtrip = pywt.idwtn(coeffs, 'db2')
assert_allclose(x_roundtrip, x, rtol=1e-10)
# mismatched dtypes OK
coeffs['a' * x.ndim] = coeffs['a' * x.ndim].astype(np.complex64)
x_roundtrip2 = pywt.idwtn(coeffs, 'db2')
assert_allclose(x_roundtrip2, x, rtol=1e-7, atol=1e-7)
assert_(x_roundtrip2.dtype == np.complex128)
def test_idwt2_size_mismatch_error():
LL = np.zeros((6, 6))
LH = HL = HH = np.zeros((5, 5))
assert_raises(ValueError, pywt.idwt2, (LL, (LH, HL, HH)), wavelet='haar')
def test_dwt2_dimension_error():
data = np.ones(16)
wavelet = pywt.Wavelet('haar')
# wrong number of input dimensions
assert_raises(ValueError, pywt.dwt2, data, wavelet)
# too many axes
data2 = np.ones((8, 8))
assert_raises(ValueError, pywt.dwt2, data2, wavelet, axes=(0, 1, 1))
def test_per_axis_wavelets_and_modes():
# tests separate wavelet and edge mode for each axis.
rstate = np.random.RandomState(1234)
data = rstate.randn(16, 16, 16)
# wavelet can be a string or wavelet object
wavelets = (pywt.Wavelet('haar'), 'sym2', 'db4')
# mode can be a string or a Modes enum
modes = ('symmetric', 'periodization',
pywt._extensions._pywt.Modes.reflect)
coefs = pywt.dwtn(data, wavelets, modes)
assert_allclose(pywt.idwtn(coefs, wavelets, modes), data, atol=1e-14)
coefs = pywt.dwtn(data, wavelets[:1], modes)
assert_allclose(pywt.idwtn(coefs, wavelets[:1], modes), data, atol=1e-14)
coefs = pywt.dwtn(data, wavelets, modes[:1])
assert_allclose(pywt.idwtn(coefs, wavelets, modes[:1]), data, atol=1e-14)
# length of wavelets or modes doesn't match the length of axes
assert_raises(ValueError, pywt.dwtn, data, wavelets[:2])
assert_raises(ValueError, pywt.dwtn, data, wavelets, mode=modes[:2])
assert_raises(ValueError, pywt.idwtn, coefs, wavelets[:2])
assert_raises(ValueError, pywt.idwtn, coefs, wavelets, mode=modes[:2])
# dwt2/idwt2 also support per-axis wavelets/modes
data2 = data[..., 0]
coefs2 = pywt.dwt2(data2, wavelets[:2], modes[:2])
assert_allclose(pywt.idwt2(coefs2, wavelets[:2], modes[:2]), data2,
atol=1e-14)
def test_error_on_continuous_wavelet():
# A ValueError is raised if a Continuous wavelet is selected
data = np.ones((16, 16))
for dec_fun, rec_fun in zip([pywt.dwt2, pywt.dwtn],
[pywt.idwt2, pywt.idwtn]):
for cwave in ['morl', pywt.DiscreteContinuousWavelet('morl')]:
assert_raises(ValueError, dec_fun, data, wavelet=cwave)
c = dec_fun(data, 'db1')
assert_raises(ValueError, rec_fun, c, wavelet=cwave)
|