1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
import warnings
from itertools import combinations
import numpy as np
import pytest
from numpy.testing import (assert_almost_equal, assert_allclose, assert_,
assert_equal, assert_raises, assert_raises_regex,
assert_array_equal, assert_warns)
import pywt
# Check that float32, float64, complex64, complex128 are preserved.
# Other real types get converted to float64.
# complex256 gets converted to complex128
dtypes_in = [np.int8, np.float16, np.float32, np.float64, np.complex64,
np.complex128]
dtypes_out = [np.float64, np.float32, np.float32, np.float64, np.complex64,
np.complex128]
# tolerances used in accuracy comparisons
tol_single = 1e-6
tol_double = 1e-13
dtypes_and_tolerances = [(np.float16, tol_single), (np.float32, tol_single),
(np.float64, tol_double), (np.int8, tol_double),
(np.complex64, tol_single),
(np.complex128, tol_double)]
# test complex256 as well if it is available
try:
dtypes_in += [np.complex256, ]
dtypes_out += [np.complex128, ]
dtypes_and_tolerances += [(np.complex256, tol_double), ]
except AttributeError:
pass
# determine which wavelets to test
wavelist = pywt.wavelist()
if 'dmey' in wavelist:
# accuracy is very low for dmey, so omit it
wavelist.remove('dmey')
# removing wavelets with dwt_possible == False
del_list = []
for wavelet in wavelist:
with warnings.catch_warnings():
warnings.simplefilter('ignore', FutureWarning)
if not isinstance(pywt.DiscreteContinuousWavelet(wavelet),
pywt.Wavelet):
del_list.append(wavelet)
for del_ind in del_list:
wavelist.remove(del_ind)
####
# 1d multilevel dwt tests
####
def test_wavedec():
x = [3, 7, 1, 1, -2, 5, 4, 6]
db1 = pywt.Wavelet('db1')
cA3, cD3, cD2, cD1 = pywt.wavedec(x, db1)
assert_almost_equal(cA3, [8.83883476])
assert_almost_equal(cD3, [-0.35355339])
assert_allclose(cD2, [4., -3.5])
assert_allclose(cD1, [-2.82842712, 0, -4.94974747, -1.41421356])
assert_(pywt.dwt_max_level(len(x), db1) == 3)
def test_waverec_invalid_inputs():
# input must be list or tuple
assert_raises(ValueError, pywt.waverec, np.ones(8), 'haar')
# input list cannot be empty
assert_raises(ValueError, pywt.waverec, [], 'haar')
# 'array_to_coeffs must specify 'output_format' to perform waverec
x = [3, 7, 1, 1, -2, 5, 4, 6]
coeffs = pywt.wavedec(x, 'db1')
arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs_from_arr = pywt.array_to_coeffs(arr, coeff_slices)
message = "Unexpected detail coefficient type"
assert_raises_regex(ValueError, message, pywt.waverec, coeffs_from_arr,
'haar')
def test_waverec_accuracies():
rstate = np.random.RandomState(1234)
x0 = rstate.randn(8)
for dt, tol in dtypes_and_tolerances:
x = x0.astype(dt)
if np.iscomplexobj(x):
x += 1j*rstate.randn(8).astype(x.real.dtype)
coeffs = pywt.wavedec(x, 'db1')
assert_allclose(pywt.waverec(coeffs, 'db1'), x, atol=tol, rtol=tol)
def test_waverec_none():
x = [3, 7, 1, 1, -2, 5, 4, 6]
coeffs = pywt.wavedec(x, 'db1')
# set some coefficients to None
coeffs[2] = None
coeffs[0] = None
assert_(pywt.waverec(coeffs, 'db1').size, len(x))
def test_waverec_odd_length():
x = [3, 7, 1, 1, -2, 5]
coeffs = pywt.wavedec(x, 'db1')
assert_allclose(pywt.waverec(coeffs, 'db1'), x, rtol=1e-12)
def test_waverec_complex():
x = np.array([3, 7, 1, 1, -2, 5, 4, 6])
x = x + 1j
coeffs = pywt.wavedec(x, 'db1')
assert_allclose(pywt.waverec(coeffs, 'db1'), x, rtol=1e-12)
def test_multilevel_dtypes_1d():
# only checks that the result is of the expected type
wavelet = pywt.Wavelet('haar')
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
# wavedec, waverec
x = np.ones(8, dtype=dt_in)
errmsg = "wrong dtype returned for {0} input".format(dt_in)
coeffs = pywt.wavedec(x, wavelet, level=2)
for c in coeffs:
assert_(c.dtype == dt_out, "wavedec: " + errmsg)
x_roundtrip = pywt.waverec(coeffs, wavelet)
assert_(x_roundtrip.dtype == dt_out, "waverec: " + errmsg)
def test_waverec_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedec(r, wavelet, mode=mode)
assert_allclose(pywt.waverec(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
####
# 2d multilevel dwt function tests
####
def test_waverec2_accuracies():
rstate = np.random.RandomState(1234)
x0 = rstate.randn(4, 4)
for dt, tol in dtypes_and_tolerances:
x = x0.astype(dt)
if np.iscomplexobj(x):
x += 1j*rstate.randn(4, 4).astype(x.real.dtype)
coeffs = pywt.wavedec2(x, 'db1')
assert_(len(coeffs) == 3)
assert_allclose(pywt.waverec2(coeffs, 'db1'), x, atol=tol, rtol=tol)
def test_multilevel_dtypes_2d():
wavelet = pywt.Wavelet('haar')
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
# wavedec2, waverec2
x = np.ones((8, 8), dtype=dt_in)
errmsg = "wrong dtype returned for {0} input".format(dt_in)
cA, coeffsD2, coeffsD1 = pywt.wavedec2(x, wavelet, level=2)
assert_(cA.dtype == dt_out, "wavedec2: " + errmsg)
for c in coeffsD1:
assert_(c.dtype == dt_out, "wavedec2: " + errmsg)
for c in coeffsD2:
assert_(c.dtype == dt_out, "wavedec2: " + errmsg)
x_roundtrip = pywt.waverec2([cA, coeffsD2, coeffsD1], wavelet)
assert_(x_roundtrip.dtype == dt_out, "waverec2: " + errmsg)
@pytest.mark.slow
def test_waverec2_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80, 96)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedec2(r, wavelet, mode=mode)
assert_allclose(pywt.waverec2(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
def test_wavedec2_complex():
data = np.ones((4, 4)) + 1j
coeffs = pywt.wavedec2(data, 'db1')
assert_(len(coeffs) == 3)
assert_allclose(pywt.waverec2(coeffs, 'db1'), data, rtol=1e-12)
def test_wavedec2_invalid_inputs():
# input array has too few dimensions
data = np.ones(4)
assert_raises(ValueError, pywt.wavedec2, data, 'haar')
def test_waverec2_invalid_inputs():
# input must be list or tuple
assert_raises(ValueError, pywt.waverec2, np.ones((8, 8)), 'haar')
# input list cannot be empty
assert_raises(ValueError, pywt.waverec2, [], 'haar')
# coefficients from a difference decomposition used as input
for dec_func in [pywt.wavedec, pywt.wavedecn]:
coeffs = dec_func(np.ones((8, 8)), 'haar')
message = "Unexpected detail coefficient type"
assert_raises_regex(ValueError, message, pywt.waverec2, coeffs,
'haar')
def test_waverec2_coeff_shape_mismatch():
x = np.ones((8, 8))
coeffs = pywt.wavedec2(x, 'db1')
# introduce a shape mismatch in the coefficients
coeffs = list(coeffs)
coeffs[1] = list(coeffs[1])
coeffs[1][1] = np.zeros((16, 1))
assert_raises(ValueError, pywt.waverec2, coeffs, 'db1')
def test_waverec2_odd_length():
x = np.ones((10, 6))
coeffs = pywt.wavedec2(x, 'db1')
assert_allclose(pywt.waverec2(coeffs, 'db1'), x, rtol=1e-12)
def test_waverec2_none_coeffs():
x = np.arange(24).reshape(6, 4)
coeffs = pywt.wavedec2(x, 'db1')
coeffs[1] = (None, None, None)
assert_(x.shape == pywt.waverec2(coeffs, 'db1').shape)
####
# nd multilevel dwt function tests
####
def test_waverecn():
rstate = np.random.RandomState(1234)
# test 1D through 4D cases
for nd in range(1, 5):
x = rstate.randn(*(4, )*nd)
coeffs = pywt.wavedecn(x, 'db1')
assert_(len(coeffs) == 3)
assert_allclose(pywt.waverecn(coeffs, 'db1'), x, rtol=tol_double)
def test_waverecn_empty_coeff():
coeffs = [np.ones((2, 2, 2)), {}, {}]
assert_equal(pywt.waverecn(coeffs, 'db1').shape, (8, 8, 8))
assert_equal(pywt.waverecn(coeffs, 'db1').shape, (8, 8, 8))
coeffs = [np.ones((2, 2, 2)), {}, {'daa': np.ones((4, 4, 4))}]
coeffs = [np.ones((2, 2, 2)), {}, {}, {'daa': np.ones((8, 8, 8))}]
assert_equal(pywt.waverecn(coeffs, 'db1').shape, (16, 16, 16))
def test_waverecn_invalid_coeffs():
# approximation coeffs as None and no valid detail oeffs
coeffs = [None, {}]
assert_raises(ValueError, pywt.waverecn, coeffs, 'db1')
# use of None for a coefficient value
coeffs = [np.ones((2, 2, 2)), {}, {'daa': None}, ]
assert_raises(ValueError, pywt.waverecn, coeffs, 'db1')
# invalid key names in coefficient list
coeffs = [np.ones((4, 4, 4)), {'daa': np.ones((4, 4, 4)),
'foo': np.ones((4, 4, 4))}]
assert_raises(ValueError, pywt.waverecn, coeffs, 'db1')
# mismatched key name lengths
coeffs = [np.ones((4, 4, 4)), {'daa': np.ones((4, 4, 4)),
'da': np.ones((4, 4, 4))}]
assert_raises(ValueError, pywt.waverecn, coeffs, 'db1')
# key name lengths don't match the array dimensions
coeffs = [[[[1.0]]], {'ad': [[[0.0]]], 'da': [[[0.0]]], 'dd': [[[0.0]]]}]
assert_raises(ValueError, pywt.waverecn, coeffs, 'db1')
# input list cannot be empty
assert_raises(ValueError, pywt.waverecn, [], 'haar')
def test_waverecn_invalid_inputs():
# coefficients from a difference decomposition used as input
for dec_func in [pywt.wavedec, pywt.wavedec2]:
coeffs = dec_func(np.ones((8, 8)), 'haar')
message = "Unexpected detail coefficient type"
assert_raises_regex(ValueError, message, pywt.waverecn, coeffs,
'haar')
def test_waverecn_lists():
# support coefficient arrays specified as lists instead of arrays
coeffs = [[[1.0]], {'ad': [[0.0]], 'da': [[0.0]], 'dd': [[0.0]]}]
assert_equal(pywt.waverecn(coeffs, 'db1').shape, (2, 2))
def test_waverecn_invalid_coeffs2():
# shape mismatch should raise an error
coeffs = [np.ones((4, 4, 4)), {'ada': np.ones((4, 4))}]
assert_raises(ValueError, pywt.waverecn, coeffs, 'db1')
def test_wavedecn_invalid_inputs():
# input array has too few dimensions
data = np.array(0)
assert_raises(ValueError, pywt.wavedecn, data, 'haar')
# invalid number of levels
data = np.ones(16)
assert_raises(ValueError, pywt.wavedecn, data, 'haar', level=-1)
def test_wavedecn_many_levels():
# perfect reconstruction even when level > pywt.dwt_max_level
data = np.arange(64).reshape(8, 8)
tol = 1e-12
dec_funcs = [pywt.wavedec, pywt.wavedec2, pywt.wavedecn]
rec_funcs = [pywt.waverec, pywt.waverec2, pywt.waverecn]
with warnings.catch_warnings():
warnings.simplefilter('ignore', UserWarning)
for dec_func, rec_func in zip(dec_funcs, rec_funcs):
for mode in ['periodization', 'symmetric']:
coeffs = dec_func(data, 'haar', mode=mode, level=20)
r = rec_func(coeffs, 'haar', mode=mode)
assert_allclose(data, r, atol=tol, rtol=tol)
def test_waverecn_accuracies():
# testing 3D only here
rstate = np.random.RandomState(1234)
x0 = rstate.randn(4, 4, 4)
for dt, tol in dtypes_and_tolerances:
x = x0.astype(dt)
if np.iscomplexobj(x):
x += 1j*rstate.randn(4, 4, 4).astype(x.real.dtype)
coeffs = pywt.wavedecn(x.astype(dt), 'db1')
assert_allclose(pywt.waverecn(coeffs, 'db1'), x, atol=tol, rtol=tol)
def test_multilevel_dtypes_nd():
wavelet = pywt.Wavelet('haar')
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
# wavedecn, waverecn
x = np.ones((8, 8), dtype=dt_in)
errmsg = "wrong dtype returned for {0} input".format(dt_in)
cA, coeffsD2, coeffsD1 = pywt.wavedecn(x, wavelet, level=2)
assert_(cA.dtype == dt_out, "wavedecn: " + errmsg)
for key, c in coeffsD1.items():
assert_(c.dtype == dt_out, "wavedecn: " + errmsg)
for key, c in coeffsD2.items():
assert_(c.dtype == dt_out, "wavedecn: " + errmsg)
x_roundtrip = pywt.waverecn([cA, coeffsD2, coeffsD1], wavelet)
assert_(x_roundtrip.dtype == dt_out, "waverecn: " + errmsg)
def test_wavedecn_complex():
data = np.ones((4, 4, 4)) + 1j
coeffs = pywt.wavedecn(data, 'db1')
assert_allclose(pywt.waverecn(coeffs, 'db1'), data, rtol=1e-12)
def test_waverecn_dtypes():
x = np.ones((4, 4, 4))
for dt, tol in dtypes_and_tolerances:
coeffs = pywt.wavedecn(x.astype(dt), 'db1')
assert_allclose(pywt.waverecn(coeffs, 'db1'), x, atol=tol, rtol=tol)
@pytest.mark.slow
def test_waverecn_all_wavelets_modes():
# test 2D case using all wavelets and modes
rstate = np.random.RandomState(1234)
r = rstate.randn(80, 96)
for wavelet in wavelist:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedecn(r, wavelet, mode=mode)
assert_allclose(pywt.waverecn(coeffs, wavelet, mode=mode),
r, rtol=tol_single, atol=tol_single)
def test_coeffs_to_array():
# single element list returns the first element
a_coeffs = [np.arange(8).reshape(2, 4), ]
arr, arr_slices = pywt.coeffs_to_array(a_coeffs)
assert_allclose(arr, a_coeffs[0])
assert_allclose(arr, arr[arr_slices[0]])
assert_raises(ValueError, pywt.coeffs_to_array, [])
# invalid second element: array as in wavedec, but not 1D
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0], ] * 2)
# invalid second element: tuple as in wavedec2, but not a 3-tuple
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs[0],
(a_coeffs[0], )])
# coefficients as None is not supported
assert_raises(ValueError, pywt.coeffs_to_array, [None, ])
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs,
(None, None, None)])
# invalid type for second coefficient list element
assert_raises(ValueError, pywt.coeffs_to_array, [a_coeffs, None])
# use an invalid key name in the coef dictionary
coeffs = [np.array([0]), dict(d=np.array([0]), c=np.array([0]))]
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
def test_wavedecn_coeff_reshape_even():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 28
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
for wave in wavelist:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = params[f]['dec'](x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
def test_wavedecn_coeff_reshape_axes_subset():
# verify round trip is correct when only a subset of axes are transformed:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
mode = 'symmetric'
w = pywt.Wavelet('db2')
N = 16
ndim = 3
for axes in [(-1, ), (0, ), (1, ), (0, 1), (1, 2), (0, 2), None]:
x1 = rng.randn(*([N] * ndim))
coeffs = pywt.wavedecn(x1, w, mode=mode, axes=axes)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, axes=axes)
if axes is not None:
# if axes is not None, it must be provided to coeffs_to_array
assert_raises(ValueError, pywt.coeffs_to_array, coeffs)
# mismatched axes size
assert_raises(ValueError, pywt.coeffs_to_array, coeffs,
axes=(0, 1, 2, 3))
assert_raises(ValueError, pywt.coeffs_to_array, coeffs,
axes=())
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
x1r = pywt.waverecn(coeffs2, w, mode=mode, axes=axes)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
def test_coeffs_to_array_padding():
rng = np.random.RandomState(1234)
x1 = rng.randn(32, 32)
mode = 'symmetric'
coeffs = pywt.wavedecn(x1, 'db2', mode=mode)
# padding=None raises a ValueError when tight packing is not possible
assert_raises(ValueError, pywt.coeffs_to_array, coeffs, padding=None)
# set padded values to nan
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, padding=np.nan)
npad = np.sum(np.isnan(coeff_arr))
assert_(npad > 0)
# pad with zeros
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs, padding=0)
assert_(np.sum(np.isnan(coeff_arr)) == 0)
assert_(np.sum(coeff_arr == 0) == npad)
# Haar case with N as a power of 2 can be tightly packed
coeffs_haar = pywt.wavedecn(x1, 'haar', mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs_haar, padding=None)
# shape of coeff_arr will match in this case, but not in general
assert_equal(coeff_arr.shape, x1.shape)
def test_waverecn_coeff_reshape_odd():
# verify round trip is correct:
# wavedecn - >coeffs_to_array-> array_to_coeffs -> waverecn
rng = np.random.RandomState(1234)
x1 = rng.randn(35, 33)
for mode in pywt.Modes.modes:
for wave in ['haar', ]:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = pywt.wavedecn(x1, w, mode=mode)
coeff_arr, coeff_slices = pywt.coeffs_to_array(coeffs)
coeffs2 = pywt.array_to_coeffs(coeff_arr, coeff_slices)
x1r = pywt.waverecn(coeffs2, w, mode=mode)
# truncate reconstructed values to original shape
x1r = x1r[tuple([slice(s) for s in x1.shape])]
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
def test_array_to_coeffs_invalid_inputs():
coeffs = pywt.wavedecn(np.ones(2), 'haar')
arr, arr_slices = pywt.coeffs_to_array(coeffs)
# empty list of array slices
assert_raises(ValueError, pywt.array_to_coeffs, arr, [])
# invalid format name
assert_raises(ValueError, pywt.array_to_coeffs, arr, arr_slices, 'foo')
def test_wavedecn_coeff_ravel():
# verify round trip is correct:
# wavedecn - >ravel_coeffs-> unravel_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 12
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
for wave in wavelist:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = params[f]['dec'](x1, w, mode=mode)
coeff_arr, slices, shapes = pywt.ravel_coeffs(coeffs)
coeffs2 = pywt.unravel_coeffs(coeff_arr, slices, shapes,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
def test_wavedecn_coeff_ravel_zero_level():
# verify round trip is correct:
# wavedecn - >ravel_coeffs-> unravel_coeffs -> waverecn
# This is done for wavedec{1, 2, n}
rng = np.random.RandomState(1234)
params = {'wavedec': {'d': 1, 'dec': pywt.wavedec, 'rec': pywt.waverec},
'wavedec2': {'d': 2, 'dec': pywt.wavedec2, 'rec': pywt.waverec2},
'wavedecn': {'d': 3, 'dec': pywt.wavedecn, 'rec': pywt.waverecn}}
N = 16
for f in params:
x1 = rng.randn(*([N] * params[f]['d']))
for mode in pywt.Modes.modes:
w = pywt.Wavelet('db2')
coeffs = params[f]['dec'](x1, w, mode=mode, level=0)
coeff_arr, slices, shapes = pywt.ravel_coeffs(coeffs)
coeffs2 = pywt.unravel_coeffs(coeff_arr, slices, shapes,
output_format=f)
x1r = params[f]['rec'](coeffs2, w, mode=mode)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
def test_waverecn_coeff_ravel_odd():
# verify round trip is correct:
# wavedecn - >ravel_coeffs-> unravel_coeffs -> waverecn
rng = np.random.RandomState(1234)
x1 = rng.randn(35, 33)
for mode in pywt.Modes.modes:
for wave in ['haar', ]:
w = pywt.Wavelet(wave)
maxlevel = pywt.dwt_max_level(np.min(x1.shape), w.dec_len)
if maxlevel == 0:
continue
coeffs = pywt.wavedecn(x1, w, mode=mode)
coeff_arr, slices, shapes = pywt.ravel_coeffs(coeffs)
coeffs2 = pywt.unravel_coeffs(coeff_arr, slices, shapes)
x1r = pywt.waverecn(coeffs2, w, mode=mode)
# truncate reconstructed values to original shape
x1r = x1r[tuple([slice(s) for s in x1.shape])]
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
def test_ravel_wavedec2_with_lists():
x1 = np.ones((8, 8))
wav = pywt.Wavelet('haar')
coeffs = pywt.wavedec2(x1, wav)
# list [cHn, cVn, cDn] instead of tuple is okay
coeffs[1:] = [list(c) for c in coeffs[1:]]
coeff_arr, slices, shapes = pywt.ravel_coeffs(coeffs)
coeffs2 = pywt.unravel_coeffs(coeff_arr, slices, shapes,
output_format='wavedec2')
x1r = pywt.waverec2(coeffs2, wav)
assert_allclose(x1, x1r, rtol=1e-4, atol=1e-4)
# wrong length list will cause a ValueError
coeffs[1:] = [list(c[:-1]) for c in coeffs[1:]] # truncate diag coeffs
assert_raises(ValueError, pywt.ravel_coeffs, coeffs)
def test_ravel_invalid_input():
# wavedec ravel does not support any coefficient arrays being set to None
coeffs = pywt.wavedec(np.ones(8), 'haar')
coeffs[1] = None
assert_raises(ValueError, pywt.ravel_coeffs, coeffs)
# wavedec2 ravel cannot have None or a tuple/list of None
coeffs = pywt.wavedec2(np.ones((8, 8)), 'haar')
coeffs[1] = (None, None, None)
assert_raises(ValueError, pywt.ravel_coeffs, coeffs)
coeffs[1] = [None, None, None]
assert_raises(ValueError, pywt.ravel_coeffs, coeffs)
coeffs[1] = None
assert_raises(ValueError, pywt.ravel_coeffs, coeffs)
# wavedecn ravel cannot have any dictionary elements as None
coeffs = pywt.wavedecn(np.ones((8, 8, 8)), 'haar')
coeffs[1]['ddd'] = None
assert_raises(ValueError, pywt.ravel_coeffs, coeffs)
def test_unravel_invalid_inputs():
coeffs = pywt.wavedecn(np.ones(2), 'haar')
arr, slices, shapes = pywt.ravel_coeffs(coeffs)
# empty list for slices or shapes
assert_raises(ValueError, pywt.unravel_coeffs, arr, slices, [])
assert_raises(ValueError, pywt.unravel_coeffs, arr, [], shapes)
# unequal length for slices/shapes
assert_raises(ValueError, pywt.unravel_coeffs, arr, slices[:-1], shapes)
# invalid format name
assert_raises(ValueError, pywt.unravel_coeffs, arr, slices, shapes, 'foo')
def test_wavedecn_shapes_and_size():
wav = pywt.Wavelet('db2')
for data_shape in [(33, ), (64, 32), (1, 15, 30)]:
for axes in [None, 0, -1]:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedecn(np.ones(data_shape), wav,
mode=mode, axes=axes)
# verify that the shapes match the coefficient shapes
shapes = pywt.wavedecn_shapes(data_shape, wav,
mode=mode, axes=axes)
assert_equal(coeffs[0].shape, shapes[0])
expected_size = coeffs[0].size
for level in range(1, len(coeffs)):
for k, v in coeffs[level].items():
expected_size += v.size
assert_equal(shapes[level][k], v.shape)
# size can be determined from either the shapes or coeffs
size = pywt.wavedecn_size(shapes)
assert_equal(size, expected_size)
size = pywt.wavedecn_size(coeffs)
assert_equal(size, expected_size)
def test_dwtn_max_level():
# predicted and empirical dwtn_max_level match
for wav in [pywt.Wavelet('db2'), 'sym8']:
for data_shape in [(33, ), (64, 32), (1, 15, 30)]:
for axes in [None, 0, -1]:
for mode in pywt.Modes.modes:
coeffs = pywt.wavedecn(np.ones(data_shape), wav,
mode=mode, axes=axes)
max_lev = pywt.dwtn_max_level(data_shape, wav, axes)
assert_equal(len(coeffs[1:]), max_lev)
def test_waverec_axes_subsets():
rstate = np.random.RandomState(0)
data = rstate.standard_normal((8, 8, 8))
# test all combinations of 1 out of 3 axes transformed
for axis in [0, 1, 2]:
coefs = pywt.wavedec(data, 'haar', axis=axis)
rec = pywt.waverec(coefs, 'haar', axis=axis)
assert_allclose(rec, data, atol=1e-14)
def test_waverec_axis_db2():
# test for fix to issue gh-293
rstate = np.random.RandomState(0)
data = rstate.standard_normal((16, 16))
for axis in [0, 1]:
coefs = pywt.wavedec(data, 'db2', axis=axis)
rec = pywt.waverec(coefs, 'db2', axis=axis)
assert_allclose(rec, data, atol=1e-14)
def test_waverec2_axes_subsets():
rstate = np.random.RandomState(0)
data = rstate.standard_normal((8, 8, 8))
# test all combinations of 2 out of 3 axes transformed
for axes in combinations((0, 1, 2), 2):
coefs = pywt.wavedec2(data, 'haar', axes=axes)
rec = pywt.waverec2(coefs, 'haar', axes=axes)
assert_allclose(rec, data, atol=1e-14)
def test_waverecn_axes_subsets():
rstate = np.random.RandomState(0)
data = rstate.standard_normal((8, 8, 8, 8))
# test all combinations of 3 out of 4 axes transformed
for axes in combinations((0, 1, 2, 3), 3):
coefs = pywt.wavedecn(data, 'haar', axes=axes)
rec = pywt.waverecn(coefs, 'haar', axes=axes)
assert_allclose(rec, data, atol=1e-14)
def test_waverecn_int_axis():
# waverecn should also work for axes as an integer
rstate = np.random.RandomState(0)
data = rstate.standard_normal((8, 8))
for axis in [0, 1]:
coefs = pywt.wavedecn(data, 'haar', axes=axis)
rec = pywt.waverecn(coefs, 'haar', axes=axis)
assert_allclose(rec, data, atol=1e-14)
def test_wavedec_axis_error():
data = np.ones(4)
# out of range axis not allowed
assert_raises(ValueError, pywt.wavedec, data, 'haar', axis=1)
def test_waverec_axis_error():
c = pywt.wavedec(np.ones(4), 'haar')
# out of range axis not allowed
assert_raises(ValueError, pywt.waverec, c, 'haar', axis=1)
def test_waverec_shape_mismatch_error():
c = pywt.wavedec(np.ones(16), 'haar')
# truncate a detail coefficient to an incorrect shape
c[3] = c[3][:-1]
assert_raises(ValueError, pywt.waverec, c, 'haar', axis=1)
def test_wavedec2_axes_errors():
data = np.ones((4, 4))
# integer axes not allowed
assert_raises(TypeError, pywt.wavedec2, data, 'haar', axes=1)
# non-unique axes not allowed
assert_raises(ValueError, pywt.wavedec2, data, 'haar', axes=(0, 0))
# out of range axis not allowed
assert_raises(ValueError, pywt.wavedec2, data, 'haar', axes=(0, 2))
def test_waverec2_axes_errors():
data = np.ones((4, 4))
c = pywt.wavedec2(data, 'haar')
# integer axes not allowed
assert_raises(TypeError, pywt.waverec2, c, 'haar', axes=1)
# non-unique axes not allowed
assert_raises(ValueError, pywt.waverec2, c, 'haar', axes=(0, 0))
# out of range axis not allowed
assert_raises(ValueError, pywt.waverec2, c, 'haar', axes=(0, 2))
def test_wavedecn_axes_errors():
data = np.ones((8, 8, 8))
# repeated axes not allowed
assert_raises(ValueError, pywt.wavedecn, data, 'haar', axes=(1, 1))
# out of range axis not allowed
assert_raises(ValueError, pywt.wavedecn, data, 'haar', axes=(0, 1, 3))
def test_waverecn_axes_errors():
data = np.ones((8, 8, 8))
c = pywt.wavedecn(data, 'haar')
# repeated axes not allowed
assert_raises(ValueError, pywt.waverecn, c, 'haar', axes=(1, 1))
# out of range axis not allowed
assert_raises(ValueError, pywt.waverecn, c, 'haar', axes=(0, 1, 3))
def test_per_axis_wavelets_and_modes():
# tests separate wavelet and edge mode for each axis.
rstate = np.random.RandomState(1234)
data = rstate.randn(24, 24, 16)
# wavelet can be a string or wavelet object
wavelets = (pywt.Wavelet('haar'), 'sym2', 'db2')
# The default number of levels should be the minimum over this list
max_levels = [pywt._dwt.dwt_max_level(nd, nf) for nd, nf in
zip(data.shape, wavelets)]
# mode can be a string or a Modes enum
modes = ('symmetric', 'periodization',
pywt._extensions._pywt.Modes.reflect)
coefs = pywt.wavedecn(data, wavelets, modes)
assert_allclose(pywt.waverecn(coefs, wavelets, modes), data, atol=1e-14)
assert_equal(min(max_levels), len(coefs[1:]))
coefs = pywt.wavedecn(data, wavelets[:1], modes)
assert_allclose(pywt.waverecn(coefs, wavelets[:1], modes), data,
atol=1e-14)
coefs = pywt.wavedecn(data, wavelets, modes[:1])
assert_allclose(pywt.waverecn(coefs, wavelets, modes[:1]), data,
atol=1e-14)
# length of wavelets or modes doesn't match the length of axes
assert_raises(ValueError, pywt.wavedecn, data, wavelets[:2])
assert_raises(ValueError, pywt.wavedecn, data, wavelets, mode=modes[:2])
assert_raises(ValueError, pywt.waverecn, coefs, wavelets[:2])
assert_raises(ValueError, pywt.waverecn, coefs, wavelets, mode=modes[:2])
# dwt2/idwt2 also support per-axis wavelets/modes
data2 = data[..., 0]
coefs2 = pywt.wavedec2(data2, wavelets[:2], modes[:2])
assert_allclose(pywt.waverec2(coefs2, wavelets[:2], modes[:2]), data2,
atol=1e-14)
assert_equal(min(max_levels[:2]), len(coefs2[1:]))
# Tests for fully separable multi-level transforms
def test_fswavedecn_fswaverecn_roundtrip():
# verify proper round trip result for 1D through 4D data
# same DWT as wavedecn/waverecn so don't need to test all modes/wavelets
rstate = np.random.RandomState(0)
for ndim in range(1, 5):
for dt_in, dt_out in zip(dtypes_in, dtypes_out):
for levels in (1, None):
data = rstate.standard_normal((8, )*ndim)
data = data.astype(dt_in)
T = pywt.fswavedecn(data, 'haar', levels=levels)
rec = pywt.fswaverecn(T)
if data.real.dtype in [np.float32, np.float16]:
assert_allclose(rec, data, rtol=1e-6, atol=1e-6)
else:
assert_allclose(rec, data, rtol=1e-14, atol=1e-14)
assert_(T.coeffs.dtype == dt_out)
assert_(rec.dtype == dt_out)
def test_fswavedecn_fswaverecn_zero_levels():
# zero level transform gives coefs matching the original data
rstate = np.random.RandomState(0)
ndim = 2
data = rstate.standard_normal((8, )*ndim)
T = pywt.fswavedecn(data, 'haar', levels=0)
assert_array_equal(T.coeffs, data)
rec = pywt.fswaverecn(T)
assert_array_equal(T.coeffs, rec)
def test_fswavedecn_fswaverecn_variable_levels():
# test with differing number of transform levels per axis
rstate = np.random.RandomState(0)
ndim = 3
data = rstate.standard_normal((16, )*ndim)
T = pywt.fswavedecn(data, 'haar', levels=(1, 2, 3))
rec = pywt.fswaverecn(T)
assert_allclose(rec, data, atol=1e-14)
# levels doesn't match number of axes
assert_raises(ValueError, pywt.fswavedecn, data, 'haar', levels=(1, 1))
assert_raises(ValueError, pywt.fswavedecn, data, 'haar', levels=(1, 1, 1, 1))
# levels too large for array size
assert_warns(UserWarning, pywt.fswavedecn, data, 'haar',
levels=int(np.log2(np.min(data.shape)))+1)
def test_fswavedecn_fswaverecn_variable_wavelets_and_modes():
# test with differing number of transform levels per axis
rstate = np.random.RandomState(0)
ndim = 3
data = rstate.standard_normal((16, )*ndim)
wavelets = ('haar', 'db2', 'sym3')
modes = ('periodic', 'symmetric', 'periodization')
T = pywt.fswavedecn(data, wavelet=wavelets, mode=modes)
for ax in range(ndim):
# expect approx + dwt_max_level detail coeffs along each axis
assert_equal(len(T.coeff_slices[ax]),
pywt.dwt_max_level(data.shape[ax], wavelets[ax])+1)
rec = pywt.fswaverecn(T)
assert_allclose(rec, data, atol=1e-14)
# number of wavelets doesn't match number of axes
assert_raises(ValueError, pywt.fswavedecn, data, wavelets[:2])
# number of modes doesn't match number of axes
assert_raises(ValueError, pywt.fswavedecn, data, wavelets[0], mode=modes[:2])
def test_fswavedecn_fswaverecn_axes_subsets():
"""Fully separable DWT over only a subset of axes"""
rstate = np.random.RandomState(0)
# use anisotropic data to result in unique number of levels per axis
data = rstate.standard_normal((4, 8, 16, 32))
# test all combinations of 3 out of 4 axes transformed
for axes in combinations((0, 1, 2, 3), 3):
T = pywt.fswavedecn(data, 'haar', axes=axes)
rec = pywt.fswaverecn(T)
assert_allclose(rec, data, atol=1e-14)
# some axes exceed data dimensions
assert_raises(ValueError, pywt.fswavedecn, data, 'haar', axes=(1, 5))
def test_fswavedecnresult():
data = np.ones((32, 32))
levels = (1, 2)
result = pywt.fswavedecn(data, 'sym2', levels=levels)
# can access the lowpass band via .approx or via __getitem__
approx_key = (0, ) * data.ndim
assert_array_equal(result[approx_key], result.approx)
dkeys = result.detail_keys()
# the approximation key shouldn't be present in the detail_keys
assert_(approx_key not in dkeys)
# can access all detail coefficients and they have matching ndim
for k in dkeys:
d = result[k]
assert_equal(d.ndim, data.ndim)
# can assign modified coefficients
result[k] = np.zeros_like(d)
# assigning a differently sized array raises a ValueError
assert_raises(ValueError, result.__setitem__,
k, np.zeros(tuple([s + 1 for s in d.shape])))
# warns on assigning with a non-matching dtype
assert_warns(UserWarning, result.__setitem__,
k, np.zeros_like(d).astype(np.float32))
# all coefficients are stacked into result.coeffs (same ndim)
assert_equal(result.coeffs.ndim, data.ndim)
def test_error_on_continuous_wavelet():
# A ValueError is raised if a Continuous wavelet is selected
data = np.ones((16, 16))
for dec_fun, rec_fun in zip([pywt.wavedec, pywt.wavedec2, pywt.wavedecn],
[pywt.waverec, pywt.waverec2, pywt.waverecn]):
for cwave in ['morl', pywt.DiscreteContinuousWavelet('morl')]:
assert_raises(ValueError, dec_fun, data, wavelet=cwave)
c = dec_fun(data, 'db1')
assert_raises(ValueError, rec_fun, c, wavelet=cwave)
def test_default_level():
# default level is the maximum permissible for the transformed axes
data = np.ones((128, 32, 4))
wavelet = ('db8', 'db1')
for dec_func in [pywt.wavedec2, pywt.wavedecn]:
for axes in [(0, 1), (2, 1), (0, 2)]:
c = dec_func(data, wavelet, axes=axes)
max_lev = np.min([pywt.dwt_max_level(data.shape[ax], wav)
for ax, wav in zip(axes, wavelet)])
assert_equal(len(c[1:]), max_lev)
for ax in [0, 1]:
c = pywt.wavedecn(data, wavelet[ax], axes=(ax, ))
assert_equal(len(c[1:]),
pywt.dwt_max_level(data.shape[ax], wavelet[ax]))
def test_waverec_mixed_precision():
rstate = np.random.RandomState(0)
for func, ifunc, shape in [(pywt.wavedec, pywt.waverec, (8, )),
(pywt.wavedec2, pywt.waverec2, (8, 8)),
(pywt.wavedecn, pywt.waverecn, (8, 8, 8))]:
x = rstate.randn(*shape)
coeffs_real = func(x, 'db1')
# real: single precision approx, double precision details
coeffs_real[0] = coeffs_real[0].astype(np.float32)
r = ifunc(coeffs_real, 'db1')
assert_allclose(r, x, rtol=1e-7, atol=1e-7)
assert_equal(r.dtype, np.float64)
x = x + 1j*x
coeffs = func(x, 'db1')
# complex: single precision approx, double precision details
coeffs[0] = coeffs[0].astype(np.complex64)
r = ifunc(coeffs, 'db1')
assert_allclose(r, x, rtol=1e-7, atol=1e-7)
assert_equal(r.dtype, np.complex128)
# complex: double precision approx, single precision details
if x.ndim == 1:
coeffs[0] = coeffs[0].astype(np.complex128)
coeffs[1] = coeffs[1].astype(np.complex64)
if x.ndim == 2:
coeffs[0] = coeffs[0].astype(np.complex128)
coeffs[1] = tuple([v.astype(np.complex64) for v in coeffs[1]])
if x.ndim == 3:
coeffs[0] = coeffs[0].astype(np.complex128)
coeffs[1] = {k: v.astype(np.complex64)
for k, v in coeffs[1].items()}
r = ifunc(coeffs, 'db1')
assert_allclose(r, x, rtol=1e-7, atol=1e-7)
assert_equal(r.dtype, np.complex128)
|