File: test_thresholding.py

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (169 lines) | stat: -rw-r--r-- 6,533 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_allclose, assert_raises, assert_, assert_equal

import pywt


float_dtypes = [np.float32, np.float64, np.complex64, np.complex128]
real_dtypes = [np.float32, np.float64]


def _sign(x):
    # Matlab-like sign function (numpy uses a different convention).
    return x / np.abs(x)


def _soft(x, thresh):
    """soft thresholding supporting complex values.

    Notes
    -----
    This version is not robust to zeros in x.
    """
    return _sign(x) * np.maximum(np.abs(x) - thresh, 0)


def test_threshold():
    data = np.linspace(1, 4, 7)

    # soft
    soft_result = [0., 0., 0., 0.5, 1., 1.5, 2.]
    assert_allclose(pywt.threshold(data, 2, 'soft'),
                    np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, 'soft'),
                    -np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'soft'),
                    [[0, 1]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'soft'),
                    [[0, 0]] * 2, rtol=1e-12)

    # soft thresholding complex values
    assert_allclose(pywt.threshold([[1j, 2j]] * 2, 1, 'soft'),
                    [[0j, 1j]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1+1j, 2+2j]] * 2, 6, 'soft'),
                    [[0, 0]] * 2, rtol=1e-12)
    complex_data = [[1+2j, 2+2j]]*2
    for thresh in [1, 2]:
        assert_allclose(pywt.threshold(complex_data, thresh, 'soft'),
                        _soft(complex_data, thresh), rtol=1e-12)

    # test soft thresholding with non-default substitute argument
    s = 5
    assert_allclose(pywt.threshold([[1j, 2]] * 2, 1.5, 'soft', substitute=s),
                    [[s, 0.5]] * 2, rtol=1e-12)

    # soft: no divide by zero warnings when input contains zeros
    assert_allclose(pywt.threshold(np.zeros(16), 2, 'soft'),
                    np.zeros(16), rtol=1e-12)

    # hard
    hard_result = [0., 0., 2., 2.5, 3., 3.5, 4.]
    assert_allclose(pywt.threshold(data, 2, 'hard'),
                    np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, 'hard'),
                    -np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'hard'),
                    [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'hard'),
                    [[0, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'hard', substitute=s),
                    [[s, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1+1j, 2+2j]] * 2, 2, 'hard'),
                    [[0, 2+2j]] * 2, rtol=1e-12)

    # greater
    greater_result = [0., 0., 2., 2.5, 3., 3.5, 4.]
    assert_allclose(pywt.threshold(data, 2, 'greater'),
                    np.array(greater_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'greater'),
                    [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'greater'),
                    [[0, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'greater', substitute=s),
                    [[s, 2]] * 2, rtol=1e-12)
    # greater doesn't allow complex-valued inputs
    assert_raises(ValueError, pywt.threshold, [1j, 2j], 2, 'greater')

    # less
    assert_allclose(pywt.threshold(data, 2, 'less'),
                    np.array([1., 1.5, 2., 0., 0., 0., 0.]), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'less'),
                    [[1, 0]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'less', substitute=s),
                    [[1, s]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'less'),
                    [[1, 2]] * 2, rtol=1e-12)

    # less doesn't allow complex-valued inputs
    assert_raises(ValueError, pywt.threshold, [1j, 2j], 2, 'less')

    # invalid
    assert_raises(ValueError, pywt.threshold, data, 2, 'foo')


def test_nonnegative_garotte():
    thresh = 0.3
    data_real = np.linspace(-1, 1, 100)
    for dtype in float_dtypes:
        if dtype in real_dtypes:
            data = np.asarray(data_real, dtype=dtype)
        else:
            data = np.asarray(data_real + 0.1j, dtype=dtype)
        d_hard = pywt.threshold(data, thresh, 'hard')
        d_soft = pywt.threshold(data, thresh, 'soft')
        d_garotte = pywt.threshold(data, thresh, 'garotte')

        # check dtypes
        assert_equal(d_hard.dtype, data.dtype)
        assert_equal(d_soft.dtype, data.dtype)
        assert_equal(d_garotte.dtype, data.dtype)

        # values < threshold are zero
        lt = np.where(np.abs(data) < thresh)
        assert_(np.all(d_garotte[lt] == 0))

        # values > than the threshold are intermediate between soft and hard
        gt = np.where(np.abs(data) > thresh)
        gt_abs_garotte = np.abs(d_garotte[gt])
        assert_(np.all(gt_abs_garotte < np.abs(d_hard[gt])))
        assert_(np.all(gt_abs_garotte > np.abs(d_soft[gt])))


def test_threshold_firm():
    thresh = 0.2
    thresh2 = 3 * thresh
    data_real = np.linspace(-1, 1, 100)
    for dtype in float_dtypes:
        if dtype in real_dtypes:
            data = np.asarray(data_real, dtype=dtype)
        else:
            data = np.asarray(data_real + 0.1j, dtype=dtype)
        if data.real.dtype == np.float32:
            rtol = atol = 1e-6
        else:
            rtol = atol = 1e-14
        d_hard = pywt.threshold(data, thresh, 'hard')
        d_soft = pywt.threshold(data, thresh, 'soft')
        d_firm = pywt.threshold_firm(data, thresh, thresh2)

        # check dtypes
        assert_equal(d_hard.dtype, data.dtype)
        assert_equal(d_soft.dtype, data.dtype)
        assert_equal(d_firm.dtype, data.dtype)

        # values < threshold are zero
        lt = np.where(np.abs(data) < thresh)
        assert_(np.all(d_firm[lt] == 0))

        # values > than the threshold are equal to hard-thresholding
        gt = np.where(np.abs(data) >= thresh2)
        assert_allclose(np.abs(d_hard[gt]), np.abs(d_firm[gt]),
                        rtol=rtol, atol=atol)

        # other values are intermediate between soft and hard thresholding
        mt = np.where(np.logical_and(np.abs(data) > thresh,
                                     np.abs(data) < thresh2))
        mt_abs_firm = np.abs(d_firm[mt])
        assert_(np.all(mt_abs_firm < np.abs(d_hard[mt])))
        assert_(np.all(mt_abs_firm > np.abs(d_soft[mt])))