File: test_wavelet.py

package info (click to toggle)
pywavelets 1.4.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,680 kB
  • sloc: python: 8,849; ansic: 5,134; makefile: 93
file content (277 lines) | stat: -rw-r--r-- 11,489 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#!/usr/bin/env python
import os
import pickle
import numpy as np
from numpy.testing import assert_allclose, assert_

import pywt


def test_wavelet_properties():
    w = pywt.Wavelet('db3')

    # Name
    assert_(w.name == 'db3')
    assert_(w.short_family_name == 'db')
    assert_(w.family_name, 'Daubechies')

    # String representation
    fields = ('Family name', 'Short name', 'Filters length', 'Orthogonal',
              'Biorthogonal', 'Symmetry')
    for field in fields:
        assert_(field in str(w))

    # Filter coefficients
    dec_lo = [0.03522629188210, -0.08544127388224, -0.13501102001039,
              0.45987750211933, 0.80689150931334, 0.33267055295096]
    dec_hi = [-0.33267055295096, 0.80689150931334, -0.45987750211933,
              -0.13501102001039, 0.08544127388224, 0.03522629188210]
    rec_lo = [0.33267055295096, 0.80689150931334, 0.45987750211933,
              -0.13501102001039, -0.08544127388224, 0.03522629188210]
    rec_hi = [0.03522629188210, 0.08544127388224, -0.13501102001039,
              -0.45987750211933, 0.80689150931334, -0.33267055295096]
    assert_allclose(w.dec_lo, dec_lo)
    assert_allclose(w.dec_hi, dec_hi)
    assert_allclose(w.rec_lo, rec_lo)
    assert_allclose(w.rec_hi, rec_hi)

    assert_(len(w.filter_bank) == 4)

    # Orthogonality
    assert_(w.orthogonal)
    assert_(w.biorthogonal)

    # Symmetry
    assert_(w.symmetry)

    # Vanishing moments
    assert_(w.vanishing_moments_phi == 0)
    assert_(w.vanishing_moments_psi == 3)


def test_wavelet_coefficients():
    families = ('db', 'sym', 'coif', 'bior', 'rbio')
    wavelets = sum([pywt.wavelist(name) for name in families], [])
    for wavelet in wavelets:
        if (pywt.Wavelet(wavelet).orthogonal):
            check_coefficients_orthogonal(wavelet)
        elif(pywt.Wavelet(wavelet).biorthogonal):
            check_coefficients_biorthogonal(wavelet)
        else:
            check_coefficients(wavelet)


def check_coefficients_orthogonal(wavelet):

    epsilon = 5e-11
    level = 5
    w = pywt.Wavelet(wavelet)
    phi, psi, x = w.wavefun(level=level)

    # Lowpass filter coefficients sum to sqrt2
    res = np.sum(w.dec_lo)-np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # sum even coef = sum odd coef = 1 / sqrt(2)
    res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)

    res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Highpass filter coefficients sum to zero
    res = np.sum(w.dec_hi)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Scaling function integrates to unity

    res = np.sum(phi) - 2**level
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Wavelet function is orthogonal to the scaling function at the same scale
    res = np.sum(phi*psi)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # The lowpass and highpass filter coefficients are orthogonal
    res = np.sum(np.array(w.dec_lo)*np.array(w.dec_hi))
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)


def check_coefficients_biorthogonal(wavelet):

    epsilon = 5e-11
    level = 5
    w = pywt.Wavelet(wavelet)
    phi_d, psi_d, phi_r, psi_r, x = w.wavefun(level=level)

    # Lowpass filter coefficients sum to sqrt2
    res = np.sum(w.dec_lo)-np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # sum even coef = sum odd coef = 1 / sqrt(2)
    res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Highpass filter coefficients sum to zero
    res = np.sum(w.dec_hi)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Scaling function integrates to unity
    res = np.sum(phi_d) - 2**level
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    res = np.sum(phi_r) - 2**level
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)


def check_coefficients(wavelet):
    epsilon = 5e-11
    level = 10
    w = pywt.Wavelet(wavelet)
    # Lowpass filter coefficients sum to sqrt2
    res = np.sum(w.dec_lo)-np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # sum even coef = sum odd coef = 1 / sqrt(2)
    res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)

    res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)
    # Highpass filter coefficients sum to zero
    res = np.sum(w.dec_hi)
    msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
    assert_(res < epsilon, msg=msg)


class _CustomHaarFilterBank(object):
    @property
    def filter_bank(self):
        val = np.sqrt(2) / 2
        return ([val]*2, [-val, val], [val]*2, [val, -val])


def test_custom_wavelet():
    haar_custom1 = pywt.Wavelet('Custom Haar Wavelet',
                                filter_bank=_CustomHaarFilterBank())
    haar_custom1.orthogonal = True
    haar_custom1.biorthogonal = True

    val = np.sqrt(2) / 2
    filter_bank = ([val]*2, [-val, val], [val]*2, [val, -val])
    haar_custom2 = pywt.Wavelet('Custom Haar Wavelet',
                                filter_bank=filter_bank)

    # check expected default wavelet properties
    assert_(~haar_custom2.orthogonal)
    assert_(~haar_custom2.biorthogonal)
    assert_(haar_custom2.symmetry == 'unknown')
    assert_(haar_custom2.family_name == '')
    assert_(haar_custom2.short_family_name == '')
    assert_(haar_custom2.vanishing_moments_phi == 0)
    assert_(haar_custom2.vanishing_moments_psi == 0)

    # Some properties can be set by the user
    haar_custom2.orthogonal = True
    haar_custom2.biorthogonal = True


def test_wavefun_sym3():
    w = pywt.Wavelet('sym3')
    # sym3 is an orthogonal wavelet, so 3 outputs from wavefun
    phi, psi, x = w.wavefun(level=3)
    assert_(phi.size == 41)
    assert_(psi.size == 41)
    assert_(x.size == 41)

    assert_allclose(x, np.linspace(0, 5, num=x.size))
    phi_expect = np.array([0.00000000e+00, 1.04132926e-01, 2.52574126e-01,
                           3.96525521e-01, 5.70356539e-01, 7.18934305e-01,
                           8.70293448e-01, 1.05363620e+00, 1.24921722e+00,
                           1.15296888e+00, 9.41669683e-01, 7.55875887e-01,
                           4.96118565e-01, 3.28293151e-01, 1.67624969e-01,
                           -7.33690312e-02, -3.35452855e-01, -3.31221131e-01,
                           -2.32061503e-01, -1.66854239e-01, -4.34091324e-02,
                           -2.86152390e-02, -3.63563035e-02, 2.06034491e-02,
                           8.30280254e-02, 7.17779073e-02, 3.85914311e-02,
                           1.47527100e-02, -2.31896077e-02, -1.86122172e-02,
                           -1.56211329e-03, -8.70615088e-04, 3.20760857e-03,
                           2.34142153e-03, -7.73737194e-04, -2.99879354e-04,
                           1.23636238e-04, 0.00000000e+00, 0.00000000e+00,
                           0.00000000e+00, 0.00000000e+00])

    psi_expect = np.array([0.00000000e+00, 1.10265752e-02, 2.67449277e-02,
                           4.19878574e-02, 6.03947231e-02, 7.61275365e-02,
                           9.21548684e-02, 1.11568926e-01, 1.32278887e-01,
                           6.45829680e-02, -3.97635130e-02, -1.38929884e-01,
                           -2.62428322e-01, -3.62246804e-01, -4.62843343e-01,
                           -5.89607507e-01, -7.25363076e-01, -3.36865858e-01,
                           2.67715108e-01, 8.40176767e-01, 1.55574430e+00,
                           1.18688954e+00, 4.20276324e-01, -1.51697311e-01,
                           -9.42076108e-01, -7.93172332e-01, -3.26343710e-01,
                           -1.24552779e-01, 2.12909254e-01, 1.75770320e-01,
                           1.47523075e-02, 8.22192707e-03, -3.02920592e-02,
                           -2.21119497e-02, 7.30703025e-03, 2.83200488e-03,
                           -1.16759765e-03, 0.00000000e+00, 0.00000000e+00,
                           0.00000000e+00, 0.00000000e+00])

    assert_allclose(phi, phi_expect)
    assert_allclose(psi, psi_expect)


def test_wavefun_bior13():
    w = pywt.Wavelet('bior1.3')
    # bior1.3 is not an orthogonal wavelet, so 5 outputs from wavefun
    phi_d, psi_d, phi_r, psi_r, x = w.wavefun(level=3)
    for arr in [phi_d, psi_d, phi_r, psi_r]:
        assert_(arr.size == 40)

    phi_d_expect = np.array([0., -0.00195313, 0.00195313, 0.01757813,
                             0.01367188, 0.00390625, -0.03515625, -0.12890625,
                             -0.15234375, -0.125, -0.09375, -0.0625, 0.03125,
                             0.15234375, 0.37890625, 0.78515625, 0.99609375,
                             1.08203125, 1.13671875, 1.13671875, 1.08203125,
                             0.99609375, 0.78515625, 0.37890625, 0.15234375,
                             0.03125, -0.0625, -0.09375, -0.125, -0.15234375,
                             -0.12890625, -0.03515625, 0.00390625, 0.01367188,
                             0.01757813, 0.00195313, -0.00195313, 0., 0., 0.])
    phi_r_expect = np.zeros(x.size, dtype=np.float64)
    phi_r_expect[15:23] = 1

    psi_d_expect = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0,
                             0.015625, -0.015625, -0.140625, -0.109375,
                             -0.03125, 0.28125, 1.03125, 1.21875, 1.125, 0.625,
                             -0.625, -1.125, -1.21875, -1.03125, -0.28125,
                             0.03125, 0.109375, 0.140625, 0.015625, -0.015625,
                             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

    psi_r_expect = np.zeros(x.size, dtype=np.float64)
    psi_r_expect[7:15] = -0.125
    psi_r_expect[15:19] = 1
    psi_r_expect[19:23] = -1
    psi_r_expect[23:31] = 0.125

    assert_allclose(x, np.linspace(0, 5, x.size, endpoint=False))
    assert_allclose(phi_d, phi_d_expect, rtol=1e-5, atol=1e-9)
    assert_allclose(phi_r, phi_r_expect, rtol=1e-10, atol=1e-12)
    assert_allclose(psi_d, psi_d_expect, rtol=1e-10, atol=1e-12)
    assert_allclose(psi_r, psi_r_expect, rtol=1e-10, atol=1e-12)


def test_wavelet_pickle(tmpdir):
    wavelet = pywt.Wavelet('sym4')
    filename = os.path.join(tmpdir, 'wav.pickle')
    with open(filename, 'wb') as f:
        pickle.dump(wavelet, f)
    with open(filename, 'rb') as f:
        wavelet2 = pickle.load(f)
    assert isinstance(wavelet2, pywt.Wavelet)
    assert wavelet2.name == wavelet.name