1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#!/usr/bin/env python
import os
import pickle
import numpy as np
from numpy.testing import assert_allclose, assert_
import pywt
def test_wavelet_properties():
w = pywt.Wavelet('db3')
# Name
assert_(w.name == 'db3')
assert_(w.short_family_name == 'db')
assert_(w.family_name, 'Daubechies')
# String representation
fields = ('Family name', 'Short name', 'Filters length', 'Orthogonal',
'Biorthogonal', 'Symmetry')
for field in fields:
assert_(field in str(w))
# Filter coefficients
dec_lo = [0.03522629188210, -0.08544127388224, -0.13501102001039,
0.45987750211933, 0.80689150931334, 0.33267055295096]
dec_hi = [-0.33267055295096, 0.80689150931334, -0.45987750211933,
-0.13501102001039, 0.08544127388224, 0.03522629188210]
rec_lo = [0.33267055295096, 0.80689150931334, 0.45987750211933,
-0.13501102001039, -0.08544127388224, 0.03522629188210]
rec_hi = [0.03522629188210, 0.08544127388224, -0.13501102001039,
-0.45987750211933, 0.80689150931334, -0.33267055295096]
assert_allclose(w.dec_lo, dec_lo)
assert_allclose(w.dec_hi, dec_hi)
assert_allclose(w.rec_lo, rec_lo)
assert_allclose(w.rec_hi, rec_hi)
assert_(len(w.filter_bank) == 4)
# Orthogonality
assert_(w.orthogonal)
assert_(w.biorthogonal)
# Symmetry
assert_(w.symmetry)
# Vanishing moments
assert_(w.vanishing_moments_phi == 0)
assert_(w.vanishing_moments_psi == 3)
def test_wavelet_coefficients():
families = ('db', 'sym', 'coif', 'bior', 'rbio')
wavelets = sum([pywt.wavelist(name) for name in families], [])
for wavelet in wavelets:
if (pywt.Wavelet(wavelet).orthogonal):
check_coefficients_orthogonal(wavelet)
elif(pywt.Wavelet(wavelet).biorthogonal):
check_coefficients_biorthogonal(wavelet)
else:
check_coefficients(wavelet)
def check_coefficients_orthogonal(wavelet):
epsilon = 5e-11
level = 5
w = pywt.Wavelet(wavelet)
phi, psi, x = w.wavefun(level=level)
# Lowpass filter coefficients sum to sqrt2
res = np.sum(w.dec_lo)-np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# sum even coef = sum odd coef = 1 / sqrt(2)
res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# Highpass filter coefficients sum to zero
res = np.sum(w.dec_hi)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# Scaling function integrates to unity
res = np.sum(phi) - 2**level
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# Wavelet function is orthogonal to the scaling function at the same scale
res = np.sum(phi*psi)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# The lowpass and highpass filter coefficients are orthogonal
res = np.sum(np.array(w.dec_lo)*np.array(w.dec_hi))
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
def check_coefficients_biorthogonal(wavelet):
epsilon = 5e-11
level = 5
w = pywt.Wavelet(wavelet)
phi_d, psi_d, phi_r, psi_r, x = w.wavefun(level=level)
# Lowpass filter coefficients sum to sqrt2
res = np.sum(w.dec_lo)-np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# sum even coef = sum odd coef = 1 / sqrt(2)
res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# Highpass filter coefficients sum to zero
res = np.sum(w.dec_hi)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# Scaling function integrates to unity
res = np.sum(phi_d) - 2**level
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
res = np.sum(phi_r) - 2**level
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
def check_coefficients(wavelet):
epsilon = 5e-11
level = 10
w = pywt.Wavelet(wavelet)
# Lowpass filter coefficients sum to sqrt2
res = np.sum(w.dec_lo)-np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# sum even coef = sum odd coef = 1 / sqrt(2)
res = np.sum(w.dec_lo[::2])-1./np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
res = np.sum(w.dec_lo[1::2])-1./np.sqrt(2)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
# Highpass filter coefficients sum to zero
res = np.sum(w.dec_hi)
msg = ('[RMS_REC > EPSILON] for Wavelet: %s, rms=%.3g' % (wavelet, res))
assert_(res < epsilon, msg=msg)
class _CustomHaarFilterBank(object):
@property
def filter_bank(self):
val = np.sqrt(2) / 2
return ([val]*2, [-val, val], [val]*2, [val, -val])
def test_custom_wavelet():
haar_custom1 = pywt.Wavelet('Custom Haar Wavelet',
filter_bank=_CustomHaarFilterBank())
haar_custom1.orthogonal = True
haar_custom1.biorthogonal = True
val = np.sqrt(2) / 2
filter_bank = ([val]*2, [-val, val], [val]*2, [val, -val])
haar_custom2 = pywt.Wavelet('Custom Haar Wavelet',
filter_bank=filter_bank)
# check expected default wavelet properties
assert_(~haar_custom2.orthogonal)
assert_(~haar_custom2.biorthogonal)
assert_(haar_custom2.symmetry == 'unknown')
assert_(haar_custom2.family_name == '')
assert_(haar_custom2.short_family_name == '')
assert_(haar_custom2.vanishing_moments_phi == 0)
assert_(haar_custom2.vanishing_moments_psi == 0)
# Some properties can be set by the user
haar_custom2.orthogonal = True
haar_custom2.biorthogonal = True
def test_wavefun_sym3():
w = pywt.Wavelet('sym3')
# sym3 is an orthogonal wavelet, so 3 outputs from wavefun
phi, psi, x = w.wavefun(level=3)
assert_(phi.size == 41)
assert_(psi.size == 41)
assert_(x.size == 41)
assert_allclose(x, np.linspace(0, 5, num=x.size))
phi_expect = np.array([0.00000000e+00, 1.04132926e-01, 2.52574126e-01,
3.96525521e-01, 5.70356539e-01, 7.18934305e-01,
8.70293448e-01, 1.05363620e+00, 1.24921722e+00,
1.15296888e+00, 9.41669683e-01, 7.55875887e-01,
4.96118565e-01, 3.28293151e-01, 1.67624969e-01,
-7.33690312e-02, -3.35452855e-01, -3.31221131e-01,
-2.32061503e-01, -1.66854239e-01, -4.34091324e-02,
-2.86152390e-02, -3.63563035e-02, 2.06034491e-02,
8.30280254e-02, 7.17779073e-02, 3.85914311e-02,
1.47527100e-02, -2.31896077e-02, -1.86122172e-02,
-1.56211329e-03, -8.70615088e-04, 3.20760857e-03,
2.34142153e-03, -7.73737194e-04, -2.99879354e-04,
1.23636238e-04, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00])
psi_expect = np.array([0.00000000e+00, 1.10265752e-02, 2.67449277e-02,
4.19878574e-02, 6.03947231e-02, 7.61275365e-02,
9.21548684e-02, 1.11568926e-01, 1.32278887e-01,
6.45829680e-02, -3.97635130e-02, -1.38929884e-01,
-2.62428322e-01, -3.62246804e-01, -4.62843343e-01,
-5.89607507e-01, -7.25363076e-01, -3.36865858e-01,
2.67715108e-01, 8.40176767e-01, 1.55574430e+00,
1.18688954e+00, 4.20276324e-01, -1.51697311e-01,
-9.42076108e-01, -7.93172332e-01, -3.26343710e-01,
-1.24552779e-01, 2.12909254e-01, 1.75770320e-01,
1.47523075e-02, 8.22192707e-03, -3.02920592e-02,
-2.21119497e-02, 7.30703025e-03, 2.83200488e-03,
-1.16759765e-03, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00])
assert_allclose(phi, phi_expect)
assert_allclose(psi, psi_expect)
def test_wavefun_bior13():
w = pywt.Wavelet('bior1.3')
# bior1.3 is not an orthogonal wavelet, so 5 outputs from wavefun
phi_d, psi_d, phi_r, psi_r, x = w.wavefun(level=3)
for arr in [phi_d, psi_d, phi_r, psi_r]:
assert_(arr.size == 40)
phi_d_expect = np.array([0., -0.00195313, 0.00195313, 0.01757813,
0.01367188, 0.00390625, -0.03515625, -0.12890625,
-0.15234375, -0.125, -0.09375, -0.0625, 0.03125,
0.15234375, 0.37890625, 0.78515625, 0.99609375,
1.08203125, 1.13671875, 1.13671875, 1.08203125,
0.99609375, 0.78515625, 0.37890625, 0.15234375,
0.03125, -0.0625, -0.09375, -0.125, -0.15234375,
-0.12890625, -0.03515625, 0.00390625, 0.01367188,
0.01757813, 0.00195313, -0.00195313, 0., 0., 0.])
phi_r_expect = np.zeros(x.size, dtype=np.float64)
phi_r_expect[15:23] = 1
psi_d_expect = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0,
0.015625, -0.015625, -0.140625, -0.109375,
-0.03125, 0.28125, 1.03125, 1.21875, 1.125, 0.625,
-0.625, -1.125, -1.21875, -1.03125, -0.28125,
0.03125, 0.109375, 0.140625, 0.015625, -0.015625,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
psi_r_expect = np.zeros(x.size, dtype=np.float64)
psi_r_expect[7:15] = -0.125
psi_r_expect[15:19] = 1
psi_r_expect[19:23] = -1
psi_r_expect[23:31] = 0.125
assert_allclose(x, np.linspace(0, 5, x.size, endpoint=False))
assert_allclose(phi_d, phi_d_expect, rtol=1e-5, atol=1e-9)
assert_allclose(phi_r, phi_r_expect, rtol=1e-10, atol=1e-12)
assert_allclose(psi_d, psi_d_expect, rtol=1e-10, atol=1e-12)
assert_allclose(psi_r, psi_r_expect, rtol=1e-10, atol=1e-12)
def test_wavelet_pickle(tmpdir):
wavelet = pywt.Wavelet('sym4')
filename = os.path.join(tmpdir, 'wav.pickle')
with open(filename, 'wb') as f:
pickle.dump(wavelet, f)
with open(filename, 'rb') as f:
wavelet2 = pickle.load(f)
assert isinstance(wavelet2, pywt.Wavelet)
assert wavelet2.name == wavelet.name
|