1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#!/usr/bin/env python
from __future__ import division, print_function, absolute_import
from itertools import product
from functools import reduce
import operator
import numpy as np
from numpy.testing import (assert_allclose, assert_, assert_raises,
assert_equal)
import pywt
def test_traversing_tree_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
assert_(np.all(wp.data == x))
assert_(wp.path == '')
assert_(wp.level == 0)
assert_(wp.maxlevel == 3)
assert_allclose(wp['aa'].data, np.array([[3., 7., 11., 15.]] * 4),
rtol=1e-12)
assert_allclose(wp['da'].data, np.zeros((4, 4)), rtol=1e-12, atol=1e-14)
assert_allclose(wp['ad'].data, -np.ones((4, 4)), rtol=1e-12, atol=1e-14)
assert_allclose(wp['dd'].data, np.zeros((4, 4)), rtol=1e-12, atol=1e-14)
assert_allclose(wp['aa'*2].data, np.array([[10., 26.]] * 2), rtol=1e-12)
# __getitem__ using a tuple access instead
assert_allclose(wp[('aa', 'aa')].data, np.array([[10., 26.]] * 2),
rtol=1e-12)
assert_(wp['aa']['aa'].data is wp['aa'*2].data)
assert_allclose(wp['aa'*3].data, np.array([[36.]]), rtol=1e-12)
assert_raises(IndexError, lambda: wp['aa'*(wp.maxlevel+1)])
assert_raises(ValueError, lambda: wp['f'])
# getitem input must be a string or tuple of strings
assert_raises(TypeError, wp.__getitem__, (5, 3))
assert_raises(TypeError, wp.__getitem__, 5)
def test_accessing_node_attributes_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
assert_allclose(wp['aa'+'ad'].data, np.zeros((2, 2)) - 4, rtol=1e-12)
assert_(wp['aa'+'ad'].path == 'aa'+'ad')
assert_(wp['aa'+'ad'].node_name == 'ad')
assert_(wp['aa'+'ad'].parent.path == 'aa')
assert_allclose(wp['aa'+'ad'].parent.data,
np.array([[3., 7., 11., 15.]] * 4), rtol=1e-12)
# can also index via a tuple instead of concatenated strings
assert_(wp[('aa', 'ad')].level == 2)
assert_(wp[('aa', 'ad')].maxlevel == 3)
assert_(wp[('aa', 'ad')].mode == 'symmetric')
# can access a node's path as either a single string or in tuple form
node = wp[('ad', 'dd')]
assert_(node.path == 'addd')
assert_(node.path_tuple == ('ad', 'dd'))
def test_collecting_nodes_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
assert_(len(wp.get_level(0)) == 1)
assert_(wp.get_level(0)[0].path == '')
# First level
assert_(len(wp.get_level(1)) == 4)
assert_(
[node.path for node in wp.get_level(1)] == ['aa', 'ad', 'da', 'dd'])
# Second and third levels
for lev in [2, 3]:
assert_(len(wp.get_level(lev)) == (2**x.ndim)**lev)
paths = [node.path for node in wp.get_level(lev)]
expected_paths = [
reduce(operator.add, p) for
p in sorted(product(['aa', 'ad', 'da', 'dd'], repeat=lev))]
assert_(paths == expected_paths)
def test_data_reconstruction_delete_nodes_nd():
x = np.array([[1, 2, 3, 4, 5, 6, 7, 8]] * 8, dtype=np.float64)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
# The user must supply either data or axes
assert_raises(ValueError, pywt.WaveletPacketND, data=None, wavelet='db1',
axes=None)
new_wp = pywt.WaveletPacketND(data=None, wavelet='db1', mode='symmetric',
axes=range(x.ndim))
new_wp['ad'+'da'] = wp['ad'+'da'].data
new_wp['ad'*2] = wp['ad'+'da'].data
new_wp['ad'+'dd'] = np.zeros((2, 2), dtype=np.float64)
new_wp['aa'] = [[3.0, 7.0, 11.0, 15.0]] * 4
new_wp['dd'] = np.zeros((4, 4), dtype=np.float64)
new_wp['da'] = wp['da'] # all zeros
assert_allclose(new_wp.reconstruct(update=False),
np.array([[1.5, 1.5, 3.5, 3.5, 5.5, 5.5, 7.5, 7.5]] * 8),
rtol=1e-12)
new_wp['ad'+'aa'] = wp['ad'+'aa'].data
assert_allclose(new_wp.reconstruct(update=False), x, rtol=1e-12)
del(new_wp['ad'+'aa'])
# TypeError on accessing deleted node
assert_raises(TypeError, lambda: new_wp['ad'+'aa'])
new_wp['ad'+'aa'] = wp['ad'+'aa'].data
assert_(new_wp.data is None)
assert_allclose(new_wp.reconstruct(update=True), x, rtol=1e-12)
assert_allclose(new_wp.data, x, rtol=1e-12)
# TODO: decompose=True
def test_wavelet_packet_dtypes():
shape = (16, 8, 8)
for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
x = np.random.randn(*shape).astype(dtype)
if np.iscomplexobj(x):
x = x + 1j*np.random.randn(*shape).astype(x.real.dtype)
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric')
# no unnecessary copy made
assert_(wp.data is x)
# full decomposition
wp.get_level(wp.maxlevel)
# reconstruction from coefficients should preserve dtype
r = wp.reconstruct(False)
assert_equal(r.dtype, x.dtype)
assert_allclose(r, x, atol=1e-6, rtol=1e-6)
def test_wavelet_packet_axes():
rstate = np.random.RandomState(0)
shape = (32, 16, 8)
x = rstate.standard_normal(shape)
for axes in [(0, 1), 1, (-3, -2, -1), (0, 2), (1, )]:
wp = pywt.WaveletPacketND(data=x, wavelet='db1', mode='symmetric',
axes=axes)
# partial decomposition
nodes = wp.get_level(1)
# size along the transformed axes has changed
for ax2 in range(x.ndim):
if ax2 in tuple(np.atleast_1d(axes) % x.ndim):
nodes[0].data.shape[ax2] < x.shape[ax2]
else:
nodes[0].data.shape[ax2] == x.shape[ax2]
# recontsruction from coefficients should preserve dtype
r = wp.reconstruct(False)
assert_equal(r.dtype, x.dtype)
assert_allclose(r, x, atol=1e-12, rtol=1e-12)
# must have non-duplicate axes
assert_raises(ValueError, pywt.WaveletPacketND, data=x, wavelet='db1',
axes=(0, 0))
|