1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
from pyx import *
# Mandelbrot calculation contributed by Stephen Phillips
# Mandelbrot parameters
re_min = -2
re_max = 0.5
im_min = -1.25
im_max = 1.25
gridx = 100
gridy = 100
max_iter = 10
# Set-up
re_step = (re_max - re_min) / gridx
im_step = (im_max - im_min) / gridy
d = []
# Compute fractal
for re_index in range(gridx):
re = re_min + re_step * (re_index + 0.5)
for im_index in range(gridy):
im = im_min + im_step * (im_index + 0.5)
c = complex(re, im)
n = 0
z = complex(0, 0)
while n < max_iter and abs(z) < 2:
z = (z * z) + c
n += 1
d.append([re, im, n])
# Plot graph
g = graph.graphxy(height=8, width=8,
x=graph.axis.linear(min=re_min, max=re_max, title=r"$\Re(c)$"),
y=graph.axis.linear(min=im_min, max=im_max, title=r'$\Im(c)$'))
g.plot(graph.data.points(d, x=1, y=2, color=3, title="iterations"),
[graph.style.density(gradient=color.rgbgradient.Rainbow)])
g.writeEPSfile()
g.writePDFfile()
g.writeSVGfile()
|