File: deco.py

package info (click to toggle)
pyx3 0.17-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,328 kB
  • sloc: python: 27,656; makefile: 225; ansic: 130; sh: 17
file content (1197 lines) | stat: -rw-r--r-- 53,270 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
# -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2002-2011 Jörg Lehmann <joerg@pyx-project.org>
# Copyright (C) 2003-2011 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2013 André Wobst <wobsta@pyx-project.org>
#
# This file is part of PyX (https://pyx-project.org/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA

# TODO:
# - should we improve on the arc length -> arg parametrization routine or
#   should we at least factor it out?

import sys, math
from . import attr, baseclasses, canvas, color, path, normpath, style, trafo, unit, deformer

_marker = object()

#
# Decorated path
#

class decoratedpath(baseclasses.canvasitem):
    """Decorated path

    The main purpose of this class is during the drawing
    (stroking/filling) of a path. It collects attributes for the
    stroke and/or fill operations.
    """

    def __init__(self, path, strokepath=None, fillpath=None,
                 styles=None, strokestyles=None, fillstyles=None,
                 ornaments=None):

        self.path = path

        # global style for stroking and filling and subdps
        self.styles = styles

        # styles which apply only for stroking and filling
        self.strokestyles = strokestyles
        self.fillstyles = fillstyles

        # the decoratedpath can contain additional elements of the
        # path (ornaments), e.g., arrowheads.
        if ornaments is None:
            self.ornaments = canvas.canvas()
        else:
            self.ornaments = ornaments

        self.nostrokeranges = None

    def ensurenormpath(self):
        """convert self.path into a normpath"""
        assert self.nostrokeranges is None or isinstance(self.path, path.normpath), "you don't understand what you are doing"
        self.path = self.path.normpath()

    def excluderange(self, begin, end):
        assert isinstance(self.path, path.normpath), "you don't understand what this is about"
        if self.nostrokeranges is None:
            self.nostrokeranges = [(begin, end)]
        else:
            ibegin = 0
            while ibegin < len(self.nostrokeranges) and self.nostrokeranges[ibegin][1] < begin:
                ibegin += 1

            if ibegin == len(self.nostrokeranges):
                self.nostrokeranges.append((begin, end))
                return

            iend = len(self.nostrokeranges) - 1
            while 0 <= iend and end < self.nostrokeranges[iend][0]:
                iend -= 1

            if iend == -1:
                self.nostrokeranges.insert(0, (begin, end))
                return

            if self.nostrokeranges[ibegin][0] < begin:
                begin = self.nostrokeranges[ibegin][0]
            if end < self.nostrokeranges[iend][1]:
                end = self.nostrokeranges[iend][1]

            self.nostrokeranges[ibegin:iend+1] = [(begin, end)]

    def bbox(self):
        pathbbox = self.path.bbox()
        ornamentsbbox = self.ornaments.bbox()
        if ornamentsbbox is not None:
            return ornamentsbbox + pathbbox
        else:
            return pathbbox

    def strokepath(self):
        if self.nostrokeranges:
            splitlist = []
            for begin, end in self.nostrokeranges:
                splitlist.append(begin)
                splitlist.append(end)
            split = self.path.split(splitlist)
            # XXX properly handle closed paths?
            result = split[0]
            for i in range(2, len(split), 2):
                result += split[i]
            return result
        else:
            return self.path

    def processPS(self, file, writer, context, registry, bbox):
        # draw (stroke and/or fill) the decoratedpath on the canvas
        # while trying to produce an efficient output, e.g., by
        # not writing one path two times

        # small helper
        def _writestyles(styles, context, registry):
            for style in styles:
                style.processPS(file, writer, context, registry)

        strokepath = self.strokepath()
        fillpath = self.path

        # apply global styles
        if self.styles:
            file.write("gsave\n")
            context = context()
            _writestyles(self.styles, context, registry)

        if self.fillstyles is not None:
            file.write("newpath\n")
            fillpath.outputPS(file, writer)

            if self.strokestyles is not None and strokepath is fillpath:
                # do efficient stroking + filling if respective paths are identical
                file.write("gsave\n")

                if self.fillstyles:
                    _writestyles(self.fillstyles, context(), registry)

                if context.fillrule:
                    file.write("eofill\n")
                else:
                    file.write("fill\n")
                file.write("grestore\n")

                acontext = context()
                if self.strokestyles:
                    file.write("gsave\n")
                    _writestyles(self.strokestyles, acontext, registry)

                file.write("stroke\n")
                # take linewidth into account for bbox when stroking a path
                bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

                if self.strokestyles:
                    file.write("grestore\n")
            else:
                # only fill fillpath - for the moment
                if self.fillstyles:
                    file.write("gsave\n")
                    _writestyles(self.fillstyles, context(), registry)

                if context.fillrule:
                    file.write("eofill\n")
                else:
                    file.write("fill\n")
                bbox += fillpath.bbox()

                if self.fillstyles:
                    file.write("grestore\n")

        if self.strokestyles is not None and (strokepath is not fillpath or self.fillstyles is None):
            # this is the only relevant case still left
            # Note that a possible filling has already been done.
            acontext = context()
            if self.strokestyles:
                file.write("gsave\n")
                _writestyles(self.strokestyles, acontext, registry)

            file.write("newpath\n")
            strokepath.outputPS(file, writer)
            file.write("stroke\n")
            # take linewidth into account for bbox when stroking a path
            bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

            if self.strokestyles:
                file.write("grestore\n")

        # now, draw additional elements of decoratedpath
        self.ornaments.processPS(file, writer, context, registry, bbox)

        # restore global styles
        if self.styles:
            file.write("grestore\n")

    def processPDF(self, file, writer, context, registry, bbox):
        # draw (stroke and/or fill) the decoratedpath on the canvas

        def _writestyles(styles, context, registry):
            for style in styles:
                style.processPDF(file, writer, context, registry)

        def _writestrokestyles(strokestyles, context, registry):
            context.fillattr = 0
            for style in strokestyles:
                style.processPDF(file, writer, context, registry)
            context.fillattr = 1

        def _writefillstyles(fillstyles, context, registry):
            context.strokeattr = 0
            for style in fillstyles:
                style.processPDF(file, writer, context, registry)
            context.strokeattr = 1

        strokepath = self.strokepath()
        fillpath = self.path

        # apply global styles
        if self.styles:
            file.write("q\n") # gsave
            context = context()
            _writestyles(self.styles, context, registry)

        if self.fillstyles is not None:
            fillpath.outputPDF(file, writer)

            if self.strokestyles is not None and strokepath is fillpath:
                # do efficient stroking + filling
                file.write("q\n") # gsave
                acontext = context()

                if self.fillstyles:
                    _writefillstyles(self.fillstyles, acontext, registry)
                if self.strokestyles:
                    _writestrokestyles(self.strokestyles, acontext, registry)

                if context.fillrule:
                    file.write("B*\n")
                else:
                    file.write("B\n") # both stroke and fill
                # take linewidth into account for bbox when stroking a path
                bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

                file.write("Q\n") # grestore
            else:
                # only fill fillpath - for the moment
                if self.fillstyles:
                    file.write("q\n") # gsave
                    _writefillstyles(self.fillstyles, context(), registry)

                if context.fillrule:
                    file.write("f*\n")
                else:
                    file.write("f\n") # fill
                bbox += fillpath.bbox()

                if self.fillstyles:
                    file.write("Q\n") # grestore

        if self.strokestyles is not None and (strokepath is not fillpath or self.fillstyles is None):
            # this is the only relevant case still left
            # Note that a possible stroking has already been done.
            acontext = context()

            if self.strokestyles:
                file.write("q\n") # gsave
                _writestrokestyles(self.strokestyles, acontext, registry)

            strokepath.outputPDF(file, writer)
            file.write("S\n") # stroke
            # take linewidth into account for bbox when stroking a path
            bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)

            if self.strokestyles:
                file.write("Q\n") # grestore

        # now, draw additional elements of decoratedpath
        self.ornaments.processPDF(file, writer, context, registry, bbox)

        # restore global styles
        if self.styles:
            file.write("Q\n") # grestore

    def processSVG(self, xml, writer, context, registry, bbox):
        def _writestrokestyles(attrs, context):
            context.fillattr = False
            for style in self.strokestyles or []:
                style.processSVGattrs(attrs, writer, context, registry)
            context.fillattr = True

        def _writefillstyles(attrs, context):
            context.strokeattr = False
            for style in self.fillstyles or []:
                style.processSVGattrs(attrs, writer, context, registry)
            context.strokeattr = True

        strokepath = self.strokepath()
        fillpath = self.path

        acontext = context()
        gattrs = {}
        for style in self.styles or []:
            style.processSVGattrs(gattrs, writer, acontext, registry)
        if gattrs:
            xml.startSVGElement("g", gattrs)

        if strokepath is not fillpath:
            if self.strokestyles is not None:
                attrs = {"d": strokepath.returnSVGdata()}
                _writestrokestyles(attrs, acontext)
                attrs["stroke"] = acontext.strokecolor
                if acontext.strokeopacity != 1:
                    attrs["opacity"] = "%f" % acontext.strokeopacity
                xml.startSVGElement("path", attrs)
                xml.endSVGElement("path")
                bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)
            if self.fillstyles is not None:
                attrs = {"d": fillpath.returnSVGdata()}
                _writefillstyles(attrs, acontext)
                attrs["fill"] = acontext.fillcolor
                if acontext.fillopacity != 1:
                    attrs["opacity"] = "%f" % acontext.fillopacity
                xml.startSVGElement("path", attrs)
                xml.endSVGElement("path")
                bbox += fillpath.bbox()
        else:
            attrs = {"d": fillpath.returnSVGdata()}
            _writestrokestyles(attrs, acontext)
            _writefillstyles(attrs, acontext)
            if self.strokestyles is not None:
                attrs["stroke"] = acontext.strokecolor
            if self.fillstyles is not None:
                attrs["fill"] = acontext.fillcolor
            if acontext.strokeopacity != acontext.fillopacity and self.strokestyles is not None and self.fillstyles is not None:
                if acontext.strokeopacity != 1:
                    attrs["opacity"] = "%f" % acontext.strokeopacity
                attrs["stroke"] = acontext.strokecolor
                attrs["fill"] = "none"
                xml.startSVGElement("path", attrs)
                xml.endSVGElement("path")
                if acontext.fillopacity != 1:
                    attrs["opacity"] = "%f" % acontext.fillopacity
                attrs["stroke"] = "none"
                attrs["fill"] = acontext.fillcolor
                xml.startSVGElement("path", attrs)
                xml.endSVGElement("path")
            else:
                if acontext.strokeopacity != 1 and self.strokestyles is not None:
                    attrs["opacity"] = "%f" % acontext.strokeopacity
                if acontext.fillopacity != 1 and self.fillstyles is not None:
                    attrs["opacity"] = "%f" % acontext.fillopacity
                xml.startSVGElement("path", attrs)
                xml.endSVGElement("path")
            if self.strokestyles is not None:
                bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)
            else:
                bbox += strokepath.bbox()

        self.ornaments.processSVG(xml, writer, acontext, registry, bbox)

        if gattrs:
            xml.endSVGElement("g")

#
# Path decorators
#

class deco:

    """decorators

    In contrast to path styles, path decorators depend on the concrete
    path to which they are applied. In particular, they don't make
    sense without any path and can thus not be used in canvas.set!

    """

    def decorate(self, dp, texrunner):
        """apply a style to a given decoratedpath object dp

        decorate accepts a decoratedpath object dp, applies PathStyle
        by modifying dp in place.
        """

        pass

#
# stroked and filled: basic decos which stroked and fill,
# respectively the path
#

class _stroked(deco, attr.exclusiveattr):

    """stroked is a decorator, which draws the outline of the path"""

    def __init__(self, styles=[]):
        attr.exclusiveattr.__init__(self, _stroked)
        self.styles = attr.mergeattrs(styles)
        attr.checkattrs(self.styles, [style.strokestyle])

    def __call__(self, styles=[]):
        # XXX or should we also merge self.styles
        return _stroked(styles)

    def decorate(self, dp, texrunner):
        if dp.strokestyles is not None:
            raise RuntimeError("Cannot stroke an already stroked path")
        dp.strokestyles = self.styles

stroked = _stroked()
stroked.clear = attr.clearclass(_stroked)


class _filled(deco, attr.exclusiveattr):

    """filled is a decorator, which fills the interior of the path"""

    def __init__(self, styles=[]):
        attr.exclusiveattr.__init__(self, _filled)
        self.styles = attr.mergeattrs(styles)
        attr.checkattrs(self.styles, [style.fillstyle])

    def __call__(self, styles=[]):
        # XXX or should we also merge self.styles
        return _filled(styles)

    def decorate(self, dp, texrunner):
        if dp.fillstyles is not None:
            raise RuntimeError("Cannot fill an already filled path")
        dp.fillstyles = self.styles

filled = _filled()
filled.clear = attr.clearclass(_filled)

#
# Arrows
#

# helper function which constructs the arrowhead

def _arrowhead(anormpath, arclenfrombegin, direction, size, angle, constriction, constrictionlen):

    """helper routine, which returns an arrowhead from a given anormpath

    - arclenfrombegin: position of arrow in arc length from the start of the path
    - direction: +1 for an arrow pointing along the direction of anormpath or
                 -1 for an arrow pointing opposite to the direction of normpath
    - size: size of the arrow as arc length
    - angle. opening angle
    - constriction: boolean to indicate whether the constriction point is to be taken into account or not
    - constrictionlen: arc length of constriction. (not used when constriction is false)
    """

    # arc length and coordinates of tip
    tx, ty = anormpath.at(arclenfrombegin)

    # construct the template for the arrow by cutting the path at the
    # corresponding length
    arrowtemplate = anormpath.split([arclenfrombegin, arclenfrombegin - direction * size])[1]

    # from this template, we construct the two outer curves of the arrow
    arrowl = arrowtemplate.transformed(trafo.rotate(-angle/2.0, tx, ty))
    arrowr = arrowtemplate.transformed(trafo.rotate( angle/2.0, tx, ty))

    # now come the joining backward parts
    if constriction:
        # constriction point (cx, cy) lies on path
        cx, cy = anormpath.at(arclenfrombegin - direction * constrictionlen)
        arrowcr= path.line(*(arrowr.atend() + (cx,cy)))
        arrow = arrowl.reversed() << arrowr << arrowcr
    else:
        arrow = arrowl.reversed() << arrowr

    arrow[-1].close()

    return arrow


_base = 6 * unit.v_pt

class arrow(deco, attr.attr):

    """arrow is a decorator which adds an arrow to either side of the path"""

    def __init__(self, attrs=[], pos=1, reversed=0, size=_base, angle=45, constriction=0.8):
        self.attrs = attr.mergeattrs([style.linestyle.solid, filled] + attrs)
        attr.checkattrs(self.attrs, [deco, style.fillstyle, style.strokestyle])
        self.pos = pos
        self.reversed = reversed
        self.size = size
        self.angle = angle
        self.constriction = constriction

        # calculate absolute arc length of constricition
        # Note that we have to correct this length because the arrowtemplates are rotated
        # by self.angle/2 to the left and right. Hence, if we want no constriction, i.e., for
        # self.constriction = 1, we actually have a length which is approximately shorter
        # by the given geometrical factor.
        if self.constriction is not None:
            self.constrictionlen = self.size * self.constriction * math.cos(math.radians(self.angle/2.0))
        else:
            # if we do not want a constriction, i.e. constriction is None, we still
            # need constrictionlen for cutting the path
            self.constrictionlen = self.size * 1 * math.cos(math.radians(self.angle/2.0))

    def __call__(self, attrs=None, pos=None, reversed=None, size=None, angle=None, constriction=_marker):
        if attrs is None:
            attrs = self.attrs
        if pos is None:
            pos = self.pos
        if reversed is None:
            reversed = self.reversed
        if size is None:
            size = self.size
        if angle is None:
            angle = self.angle
        if constriction is _marker:
            constriction = self.constriction
        return arrow(attrs=attrs, pos=pos, reversed=reversed, size=size, angle=angle, constriction=constriction)

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        anormpath = dp.path

        arclenfrombegin = (1-self.reversed)*self.constrictionlen + self.pos * (anormpath.arclen() - self.constrictionlen)
        direction = self.reversed and -1 or 1
        arrowhead = _arrowhead(anormpath, arclenfrombegin, direction, self.size, self.angle,
                               self.constriction is not None, self.constrictionlen)

        # add arrowhead to decoratedpath
        dp.ornaments.draw(arrowhead, self.attrs)

        # exlude part of the path from stroking when the arrow is strictly at the begin or the end
        if self.pos == 0 and self.reversed:
            dp.excluderange(0, min(self.size, self.constrictionlen))
        elif self.pos == 1 and not self.reversed:
            dp.excluderange(anormpath.end() - min(self.size, self.constrictionlen), anormpath.end())

arrow.clear = attr.clearclass(arrow)

# arrows at begin of path
barrow = arrow(pos=0, reversed=1)
barrow.SMALL = barrow(size=_base/math.sqrt(64))
barrow.SMALl = barrow(size=_base/math.sqrt(32))
barrow.SMAll = barrow(size=_base/math.sqrt(16))
barrow.SMall = barrow(size=_base/math.sqrt(8))
barrow.Small = barrow(size=_base/math.sqrt(4))
barrow.small = barrow(size=_base/math.sqrt(2))
barrow.normal = barrow(size=_base)
barrow.large = barrow(size=_base*math.sqrt(2))
barrow.Large = barrow(size=_base*math.sqrt(4))
barrow.LArge = barrow(size=_base*math.sqrt(8))
barrow.LARge = barrow(size=_base*math.sqrt(16))
barrow.LARGe = barrow(size=_base*math.sqrt(32))
barrow.LARGE = barrow(size=_base*math.sqrt(64))

# arrows at end of path
earrow = arrow()
earrow.SMALL = earrow(size=_base/math.sqrt(64))
earrow.SMALl = earrow(size=_base/math.sqrt(32))
earrow.SMAll = earrow(size=_base/math.sqrt(16))
earrow.SMall = earrow(size=_base/math.sqrt(8))
earrow.Small = earrow(size=_base/math.sqrt(4))
earrow.small = earrow(size=_base/math.sqrt(2))
earrow.normal = earrow(size=_base)
earrow.large = earrow(size=_base*math.sqrt(2))
earrow.Large = earrow(size=_base*math.sqrt(4))
earrow.LArge = earrow(size=_base*math.sqrt(8))
earrow.LARge = earrow(size=_base*math.sqrt(16))
earrow.LARGe = earrow(size=_base*math.sqrt(32))
earrow.LARGE = earrow(size=_base*math.sqrt(64))


class text(deco, attr.attr):
    """a simple text decorator"""

    def __init__(self, text, textattrs=[], angle=0, relangle=None, textdist=0.2,
                       relarclenpos=0.5, arclenfrombegin=None, arclenfromend=None,
                       texrunner=None):
        if arclenfrombegin is not None and arclenfromend is not None:
            raise ValueError("either set arclenfrombegin or arclenfromend")
        self.text = text
        self.textattrs = textattrs
        self.angle = angle
        self.relangle = relangle
        self.textdist = textdist
        self.relarclenpos = relarclenpos
        self.arclenfrombegin = arclenfrombegin
        self.arclenfromend = arclenfromend
        self.texrunner = texrunner

    def decorate(self, dp, texrunner):
        if self.texrunner:
            texrunner = self.texrunner
        from . import text as textmodule
        textattrs = attr.mergeattrs([textmodule.halign.center, textmodule.vshift.mathaxis] + self.textattrs)

        dp.ensurenormpath()
        if self.arclenfrombegin is not None:
            param = dp.path.begin() + self.arclenfrombegin
        elif self.arclenfromend is not None:
            param = dp.path.end() - self.arclenfromend
        else:
            # relarcpos is used, when neither arcfrombegin nor arcfromend is given
            param = self.relarclenpos * dp.path.arclen()
        x, y = dp.path.at(param)

        if self.relangle is not None:
            a = dp.path.trafo(param).apply_pt(math.cos(self.relangle*math.pi/180), math.sin(self.relangle*math.pi/180))
            b = dp.path.trafo(param).apply_pt(0, 0)
            angle = math.atan2(a[1] - b[1], a[0] - b[0])
        else:
            angle = self.angle*math.pi/180
        t = texrunner.text(x, y, self.text, textattrs)
        t.linealign(self.textdist, math.cos(angle), math.sin(angle))
        dp.ornaments.insert(t)

class curvedtext(deco, attr.attr):
    """a text decorator for curved text

    - text: is typeset along the path to which this decorator is applied
    - relarclenpos: position for the base point of the text (default: 0)
    - arlenfrombegin, arclenfromend: alternative ways of specifying the position of the base point;
                                     use of relarclenpos, arclenfrombegin and arclenfromend is mutually exclusive
    - textattrs, texrunner: standard text arguments (defaults: [] resp None)

    """

    # defaulttextattrs = [textmodule.halign.center] # TODO: not possible due to cyclic import issue

    def __init__(self, text, textattrs=[],
                       relarclenpos=0.5, arclenfrombegin=None, arclenfromend=None,
                       texrunner=None, exclude=None):
        if arclenfrombegin is not None and arclenfromend is not None:
            raise ValueError("either set arclenfrombegin or arclenfromend")
        self.text = text
        self.textattrs = textattrs
        self.relarclenpos = relarclenpos
        self.arclenfrombegin = arclenfrombegin
        self.arclenfromend = arclenfromend
        self.texrunner = texrunner
        self.exclude = exclude

    def decorate(self, dp, texrunner):
        if self.texrunner:
            texrunner = self.texrunner
        from . import text as textmodule
        self.defaulttextattrs = [textmodule.halign.center]

        dp.ensurenormpath()
        if self.arclenfrombegin is not None:
            textpos = dp.path.begin() + self.arclenfrombegin
        elif self.arclenfromend is not None:
            textpos = dp.path.end() - self.arclenfromend
        else:
            # relarcpos is used if neither arcfrombegin nor arcfromend is given
            textpos = self.relarclenpos * dp.path.arclen()

        textattrs = self.defaulttextattrs + self.textattrs
        t = texrunner.text(0, 0, self.text, textattrs, singlecharmode=1)
        t.do_finish()

        # we copy the style from the original textbox and modify the position for each dvicanvas item
        c = canvas.canvas(t.dvicanvas.styles)
        for item in t.dvicanvas.items:
            bbox = item.bbox()
            bbox = bbox.transformed(t.texttrafo)
            x = bbox.center()[0]
            atrafo = dp.path.trafo(textpos+x)
            c.insert(item, [t.texttrafo] + [trafo.translate(-x, 0)] + [atrafo])
            if self.exclude is not None:
                dp.excluderange(textpos+bbox.left()-self.exclude, textpos+bbox.right()+self.exclude)

        dp.ornaments.insert(c)


class shownormpath(deco, attr.attr):

    default_normline_attrs = [color.rgb.blue]
    default_normcurve_attrs = [color.rgb.green]
    default_endpoint_attrs = []
    default_controlline_attrs = [color.rgb.red, style.linestyle.dashed]
    default_controlpoint_attrs = [color.rgb.red]

    def __init__(self, normline_attrs=[], normcurve_attrs=[],
                       endpoint_size=0.05*unit.v_cm, endpoint_attrs=[],
                       controlline_attrs=[],
                       controlpoint_size=0.05*unit.v_cm, controlpoint_attrs=[]):
        self.normline_attrs = attr.refineattrs(normline_attrs, self.default_normline_attrs, [style.strokestyle])
        self.normcurve_attrs = attr.refineattrs(normcurve_attrs, self.default_normcurve_attrs, [style.strokestyle])
        self.endpoint_size_pt = unit.topt(endpoint_size)
        self.endpoint_attrs = attr.refineattrs(endpoint_attrs, self.default_endpoint_attrs, [style.fillstyle])
        self.controlline_attrs = attr.refineattrs(controlline_attrs, self.default_controlline_attrs, [style.strokestyle])
        self.controlpoint_size_pt = unit.topt(controlpoint_size)
        self.controlpoint_attrs = attr.refineattrs(controlpoint_attrs, self.default_controlpoint_attrs, [style.fillstyle])

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        for normsubpath in dp.path.normsubpaths:
            for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
                p = path.path(path.moveto_pt(*normsubpathitem.atbegin_pt()), normsubpathitem.pathitem())
                if isinstance(normsubpathitem, normpath.normcurve_pt):
                    if self.normcurve_attrs is not None:
                        dp.ornaments.stroke(p, self.normcurve_attrs)
                else:
                    if self.normline_attrs is not None:
                        dp.ornaments.stroke(p, self.normline_attrs)
        for normsubpath in dp.path.normsubpaths:
            for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
                if isinstance(normsubpathitem, normpath.normcurve_pt):
                    if self.controlline_attrs is not None:
                        dp.ornaments.stroke(path.line_pt(normsubpathitem.x0_pt, normsubpathitem.y0_pt,
                                                         normsubpathitem.x1_pt, normsubpathitem.y1_pt), self.controlline_attrs)
                        dp.ornaments.stroke(path.line_pt(normsubpathitem.x2_pt, normsubpathitem.y2_pt,
                                                         normsubpathitem.x3_pt, normsubpathitem.y3_pt), self.controlline_attrs)
                    if self.controlpoint_attrs is not None:
                        dp.ornaments.fill(path.circle_pt(normsubpathitem.x1_pt, normsubpathitem.y1_pt, self.controlpoint_size_pt), self.controlpoint_attrs)
                        dp.ornaments.fill(path.circle_pt(normsubpathitem.x2_pt, normsubpathitem.y2_pt, self.controlpoint_size_pt), self.controlpoint_attrs)
        if self.endpoint_attrs is not None:
            for normsubpath in dp.path.normsubpaths:
                for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
                    if not i:
                        x_pt, y_pt = normsubpathitem.atbegin_pt()
                        dp.ornaments.fill(path.circle_pt(x_pt, y_pt, self.endpoint_size_pt), self.endpoint_attrs)
                    x_pt, y_pt = normsubpathitem.atend_pt()
                    dp.ornaments.fill(path.circle_pt(x_pt, y_pt, self.endpoint_size_pt), self.endpoint_attrs)


class linehatched(deco, attr.exclusiveattr, attr.clearclass):
    """draws a pattern with explicit lines

    This class acts as a drop-in replacement for postscript patterns
    from the pattern module which are not understood by some printers"""

    def __init__(self, dist, angle, strokestyles=[], cross=0):
        attr.clearclass.__init__(self, _filled)
        attr.exclusiveattr.__init__(self, linehatched)
        self.dist = dist
        self.angle = angle
        self.strokestyles = attr.mergeattrs([style.linewidth.THIN] + strokestyles)
        attr.checkattrs(self.strokestyles, [style.strokestyle])
        self.cross = cross

    def __call__(self, dist=None, angle=None, strokestyles=None, cross=None):
        if dist is None:
            dist = self.dist
        if angle is None:
            angle = self.angle
        if strokestyles is None:
            strokestyles = self.strokestyles
        if cross is None:
            cross = self.cross
        return linehatched(dist, angle, strokestyles, cross)

    def _decocanvas(self, angle, dp, texrunner):
        dp.ensurenormpath()
        dist_pt = unit.topt(self.dist)

        c = canvas.canvas([canvas.clip(dp.path)])
        llx_pt, lly_pt, urx_pt, ury_pt = dp.path.bbox().highrestuple_pt()
        center_pt = 0.5*(llx_pt+urx_pt), 0.5*(lly_pt+ury_pt)
        radius_pt = 0.5*math.hypot(urx_pt-llx_pt, ury_pt-lly_pt) + dist_pt
        n = int(2*radius_pt / dist_pt) + 1
        for i in range(n):
            x_pt = center_pt[0] - radius_pt + i*dist_pt
            c.stroke(path.line_pt(x_pt, center_pt[1]-radius_pt, x_pt, center_pt[1]+radius_pt),
                     [trafo.rotate_pt(angle, center_pt[0], center_pt[1])] + self.strokestyles)
        return c

    def decorate(self, dp, texrunner):
        dp.ornaments.insert(self._decocanvas(self.angle, dp, texrunner))
        if self.cross:
            dp.ornaments.insert(self._decocanvas(self.angle+90, dp, texrunner))

    def merge(self, attrs):
        # act as attr.clearclass and as attr.exclusiveattr at the same time
        newattrs = attr.exclusiveattr.merge(self, attrs)
        return attr.clearclass.merge(self, newattrs)

linehatched.clear = attr.clearclass(linehatched)

_hatch_base = 0.1 * unit.v_cm

linehatched0 = linehatched(_hatch_base, 0)
linehatched0.SMALL = linehatched0(_hatch_base/math.sqrt(64))
linehatched0.SMALL = linehatched0(_hatch_base/math.sqrt(64))
linehatched0.SMALl = linehatched0(_hatch_base/math.sqrt(32))
linehatched0.SMAll = linehatched0(_hatch_base/math.sqrt(16))
linehatched0.SMall = linehatched0(_hatch_base/math.sqrt(8))
linehatched0.Small = linehatched0(_hatch_base/math.sqrt(4))
linehatched0.small = linehatched0(_hatch_base/math.sqrt(2))
linehatched0.normal = linehatched0(_hatch_base)
linehatched0.large = linehatched0(_hatch_base*math.sqrt(2))
linehatched0.Large = linehatched0(_hatch_base*math.sqrt(4))
linehatched0.LArge = linehatched0(_hatch_base*math.sqrt(8))
linehatched0.LARge = linehatched0(_hatch_base*math.sqrt(16))
linehatched0.LARGe = linehatched0(_hatch_base*math.sqrt(32))
linehatched0.LARGE = linehatched0(_hatch_base*math.sqrt(64))

linehatched45 = linehatched(_hatch_base, 45)
linehatched45.SMALL = linehatched45(_hatch_base/math.sqrt(64))
linehatched45.SMALl = linehatched45(_hatch_base/math.sqrt(32))
linehatched45.SMAll = linehatched45(_hatch_base/math.sqrt(16))
linehatched45.SMall = linehatched45(_hatch_base/math.sqrt(8))
linehatched45.Small = linehatched45(_hatch_base/math.sqrt(4))
linehatched45.small = linehatched45(_hatch_base/math.sqrt(2))
linehatched45.normal = linehatched45(_hatch_base)
linehatched45.large = linehatched45(_hatch_base*math.sqrt(2))
linehatched45.Large = linehatched45(_hatch_base*math.sqrt(4))
linehatched45.LArge = linehatched45(_hatch_base*math.sqrt(8))
linehatched45.LARge = linehatched45(_hatch_base*math.sqrt(16))
linehatched45.LARGe = linehatched45(_hatch_base*math.sqrt(32))
linehatched45.LARGE = linehatched45(_hatch_base*math.sqrt(64))

linehatched90 = linehatched(_hatch_base, 90)
linehatched90.SMALL = linehatched90(_hatch_base/math.sqrt(64))
linehatched90.SMALl = linehatched90(_hatch_base/math.sqrt(32))
linehatched90.SMAll = linehatched90(_hatch_base/math.sqrt(16))
linehatched90.SMall = linehatched90(_hatch_base/math.sqrt(8))
linehatched90.Small = linehatched90(_hatch_base/math.sqrt(4))
linehatched90.small = linehatched90(_hatch_base/math.sqrt(2))
linehatched90.normal = linehatched90(_hatch_base)
linehatched90.large = linehatched90(_hatch_base*math.sqrt(2))
linehatched90.Large = linehatched90(_hatch_base*math.sqrt(4))
linehatched90.LArge = linehatched90(_hatch_base*math.sqrt(8))
linehatched90.LARge = linehatched90(_hatch_base*math.sqrt(16))
linehatched90.LARGe = linehatched90(_hatch_base*math.sqrt(32))
linehatched90.LARGE = linehatched90(_hatch_base*math.sqrt(64))

linehatched135 = linehatched(_hatch_base, 135)
linehatched135.SMALL = linehatched135(_hatch_base/math.sqrt(64))
linehatched135.SMALl = linehatched135(_hatch_base/math.sqrt(32))
linehatched135.SMAll = linehatched135(_hatch_base/math.sqrt(16))
linehatched135.SMall = linehatched135(_hatch_base/math.sqrt(8))
linehatched135.Small = linehatched135(_hatch_base/math.sqrt(4))
linehatched135.small = linehatched135(_hatch_base/math.sqrt(2))
linehatched135.normal = linehatched135(_hatch_base)
linehatched135.large = linehatched135(_hatch_base*math.sqrt(2))
linehatched135.Large = linehatched135(_hatch_base*math.sqrt(4))
linehatched135.LArge = linehatched135(_hatch_base*math.sqrt(8))
linehatched135.LARge = linehatched135(_hatch_base*math.sqrt(16))
linehatched135.LARGe = linehatched135(_hatch_base*math.sqrt(32))
linehatched135.LARGE = linehatched135(_hatch_base*math.sqrt(64))

crosslinehatched0 = linehatched(_hatch_base, 0, cross=1)
crosslinehatched0.SMALL = crosslinehatched0(_hatch_base/math.sqrt(64))
crosslinehatched0.SMALl = crosslinehatched0(_hatch_base/math.sqrt(32))
crosslinehatched0.SMAll = crosslinehatched0(_hatch_base/math.sqrt(16))
crosslinehatched0.SMall = crosslinehatched0(_hatch_base/math.sqrt(8))
crosslinehatched0.Small = crosslinehatched0(_hatch_base/math.sqrt(4))
crosslinehatched0.small = crosslinehatched0(_hatch_base/math.sqrt(2))
crosslinehatched0.normal = crosslinehatched0
crosslinehatched0.large = crosslinehatched0(_hatch_base*math.sqrt(2))
crosslinehatched0.Large = crosslinehatched0(_hatch_base*math.sqrt(4))
crosslinehatched0.LArge = crosslinehatched0(_hatch_base*math.sqrt(8))
crosslinehatched0.LARge = crosslinehatched0(_hatch_base*math.sqrt(16))
crosslinehatched0.LARGe = crosslinehatched0(_hatch_base*math.sqrt(32))
crosslinehatched0.LARGE = crosslinehatched0(_hatch_base*math.sqrt(64))

crosslinehatched45 = linehatched(_hatch_base, 45, cross=1)
crosslinehatched45.SMALL = crosslinehatched45(_hatch_base/math.sqrt(64))
crosslinehatched45.SMALl = crosslinehatched45(_hatch_base/math.sqrt(32))
crosslinehatched45.SMAll = crosslinehatched45(_hatch_base/math.sqrt(16))
crosslinehatched45.SMall = crosslinehatched45(_hatch_base/math.sqrt(8))
crosslinehatched45.Small = crosslinehatched45(_hatch_base/math.sqrt(4))
crosslinehatched45.small = crosslinehatched45(_hatch_base/math.sqrt(2))
crosslinehatched45.normal = crosslinehatched45
crosslinehatched45.large = crosslinehatched45(_hatch_base*math.sqrt(2))
crosslinehatched45.Large = crosslinehatched45(_hatch_base*math.sqrt(4))
crosslinehatched45.LArge = crosslinehatched45(_hatch_base*math.sqrt(8))
crosslinehatched45.LARge = crosslinehatched45(_hatch_base*math.sqrt(16))
crosslinehatched45.LARGe = crosslinehatched45(_hatch_base*math.sqrt(32))
crosslinehatched45.LARGE = crosslinehatched45(_hatch_base*math.sqrt(64))


class colorgradient(deco, attr.attr):
    """inserts pieces of the path in different colors"""

    def __init__(self, grad, attrs=[], steps=20):
        self.attrs = attrs
        self.grad = grad
        self.steps = steps

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        l = dp.path.arclen()

        colors = [self.grad.select(n, self.steps) for n in range(self.steps)]
        colors.reverse()
        params = dp.path.arclentoparam([l*i/float(self.steps) for i in range(self.steps)])
        params.reverse()

        c = canvas.canvas()
        # treat the end pieces separately
        c.stroke(dp.path.split(params[1])[1], attr.mergeattrs([colors[0]] + self.attrs))
        for n in range(1,self.steps-1):
            c.stroke(dp.path.split([params[n-1],params[n+1]])[1], attr.mergeattrs([colors[n]] + self.attrs))
        c.stroke(dp.path.split(params[-2])[0], attr.mergeattrs([colors[-1]] + self.attrs))
        dp.ornaments.insert(c)


class brace(deco, attr.attr):
    r"""draws a nicely curled brace

    In most cases, the original line is not wanted use canvas.canvas.draw(..) for it

    Geometrical parameters:

                 inner /\ strokes
          ____________/  \__________
         /   bar            bar     \ outer
        /                            \ strokes

    totalheight  distance from the jaws to the middle cap
    barthickness  thickness of the main bars
    innerstrokesthickness  thickness of the two ending strokes
    outerstrokesthickness  thickness of the inner strokes at the middle cap
    innerstrokesrelheight  height of the inner/outer strokes, relative to the total height
    outerstrokesrelheight  this determines the angle of the main bars!
                           should be around 0.5
    Note: if innerstrokesrelheight + outerstrokesrelheight == 1 then the main bars
          will be aligned parallel to the connecting line between the endpoints
    outerstrokesangle  angle of the two ending strokes
    innerstrokesangle  angle between the inner strokes at the middle cap
    slantstrokesangle  extra slanting of the inner/outer strokes
    innerstrokessmoothness  smoothing parameter for the inner + outer strokes
    outerstrokessmoothness  should be around 1 (allowed: [0,infty))
    middlerelpos  position of the middle cap (0 == left, 1 == right)
    """
    # This code is experimental because it is unclear
    # how the brace fits into the concepts of PyX
    #
    # Some thoughts:
    # - a brace needs to be decoratable with text
    #   it needs stroking and filling attributes
    # - the brace is not really a box:
    #   it has two "anchor" points that are important for aligning it to other things
    #   and one "anchor" point (plus direction) for aligning other things
    # - a brace is not a deformer:
    #   it does not look at anything else than begin/endpoint of a path
    # - a brace might be a connector (which is to be dissolved into the box concept later?)

    def __init__(self, reverse=1, stretch=None, dist=None, fillattrs=[],
        totalheight=12*unit.x_pt,
        barthickness=0.5*unit.x_pt, innerstrokesthickness=0.25*unit.x_pt, outerstrokesthickness=0.25*unit.x_pt,
        innerstrokesrelheight=0.6, outerstrokesrelheight=0.7,
        innerstrokesangle=30, outerstrokesangle=25, slantstrokesangle=5,
        innerstrokessmoothness=2.0, outerstrokessmoothness=2.5,
        middlerelpos=0.5):
        self.fillattrs = fillattrs
        self.reverse = reverse
        self.stretch = stretch
        self.dist = dist
        self.totalheight            = totalheight
        self.barthickness           = barthickness
        self.innerstrokesthickness  = innerstrokesthickness
        self.outerstrokesthickness  = outerstrokesthickness
        self.innerstrokesrelheight  = innerstrokesrelheight
        self.outerstrokesrelheight  = outerstrokesrelheight
        self.innerstrokesangle      = innerstrokesangle
        self.outerstrokesangle      = outerstrokesangle
        self.slantstrokesangle      = slantstrokesangle
        self.innerstrokessmoothness = innerstrokessmoothness
        self.outerstrokessmoothness = outerstrokessmoothness
        self.middlerelpos           = middlerelpos

    def __call__(self, **kwargs):
        for name in ["reverse", "stretch", "dist", "fillattrs",
            "totalheight", "barthickness", "innerstrokesthickness", "outerstrokesthickness",
            "innerstrokesrelheight", "outerstrokesrelheight", "innerstrokesangle", "outerstrokesangle", "slantstrokesangle",
            "innerstrokessmoothness", "outerstrokessmoothness", "middlerelpos"]:
            if name not in kwargs:
                kwargs[name] = self.__dict__[name]
        return brace(**kwargs)

    def _halfbracepath_pt(self, length_pt, height_pt, ilength_pt, olength_pt, # <<<
    ithick_pt, othick_pt, bthick_pt, cos_iangle, sin_iangle, cos_oangle,
    sin_oangle, cos_slangle, sin_slangle):

        ismooth = self.innerstrokessmoothness
        osmooth = self.outerstrokessmoothness

        # these two parameters are not important enough to be seen outside
        inner_cap_param = 1.5
        outer_cap_param = 2.5
        outerextracurved = 0.6 # in (0, 1]
        # 1.0 will lead to F=G, the outer strokes will not be curved at their ends.
        # The smaller, the more curvature

        # build an orientation path (three straight lines)
        #
        #      \q1
        #    /  \
        #   /    \
        # _/      \______________________________________q5
        #         q2         q3              q4           \
        #                                                  \
        #                                                   \
        #                                                    \q6
        #
        # get the points for that:
        q1 = (0, height_pt - inner_cap_param * ithick_pt + 0.5*ithick_pt/sin_iangle)
        q2 = (q1[0] + ilength_pt * sin_iangle,
              q1[1] - ilength_pt * cos_iangle)
        q6 = (length_pt, 0)
        q5 = (q6[0] - olength_pt * sin_oangle,
              q6[1] + olength_pt * cos_oangle)
        bardir = (q5[0] - q2[0], q5[1] - q2[1])
        bardirnorm = math.hypot(*bardir)
        bardir = (bardir[0]/bardirnorm, bardir[1]/bardirnorm)
        ismoothlength_pt = ilength_pt * ismooth
        osmoothlength_pt = olength_pt * osmooth
        if bardirnorm < ismoothlength_pt + osmoothlength_pt:
            ismoothlength_pt = bardirnorm * ismoothlength_pt / (ismoothlength_pt + osmoothlength_pt)
            osmoothlength_pt = bardirnorm * osmoothlength_pt / (ismoothlength_pt + osmoothlength_pt)
        q3 = (q2[0] + ismoothlength_pt * bardir[0],
              q2[1] + ismoothlength_pt * bardir[1])
        q4 = (q5[0] - osmoothlength_pt * bardir[0],
              q5[1] - osmoothlength_pt * bardir[1])

        #
        #    P _O
        #   / | \A2
        #  / A1\ \
        #   /   \ B2C2________D2___________E2_______F2___G2
        #        \______________________________________  \
        #       B1,C1         D1           E1      F1  G1  \
        #                                                \  \
        #                                                 \  \H2
        #                                                H1\_/I2
        #                                                  I1
        #
        # the halfbraces meet in P and A1:
        P = (0, height_pt)
        A1 = (0, height_pt - inner_cap_param * ithick_pt)
        # A2 is A1, shifted by the inner thickness
        A2 = (A1[0] + ithick_pt * cos_iangle,
              A1[1] + ithick_pt * sin_iangle)
        s, t = deformer.intersection(P, A2, (cos_slangle, sin_slangle), (sin_iangle, -cos_iangle))
        O = (P[0] + s * cos_slangle,
             P[1] + s * sin_slangle)

        # from D1 to E1 is the straight part of the brace
        # also back from E2 to D1
        D1 = (q3[0] + bthick_pt * bardir[1],
              q3[1] - bthick_pt * bardir[0])
        D2 = (q3[0] - bthick_pt * bardir[1],
              q3[1] + bthick_pt * bardir[0])
        E1 = (q4[0] + bthick_pt * bardir[1],
              q4[1] - bthick_pt * bardir[0])
        E2 = (q4[0] - bthick_pt * bardir[1],
              q4[1] + bthick_pt * bardir[0])
        # I1, I2 are the control points at the outer stroke
        I1 = (q6[0] - 0.5 * othick_pt * cos_oangle,
              q6[1] - 0.5 * othick_pt * sin_oangle)
        I2 = (q6[0] + 0.5 * othick_pt * cos_oangle,
              q6[1] + 0.5 * othick_pt * sin_oangle)
        # get the control points for the curved parts of the brace
        s, t = deformer.intersection(A1, D1, (sin_iangle, -cos_iangle), bardir)
        B1 = (D1[0] + t * bardir[0],
              D1[1] + t * bardir[1])
        s, t = deformer.intersection(A2, D2, (sin_iangle, -cos_iangle), bardir)
        B2 = (D2[0] + t * bardir[0],
              D2[1] + t * bardir[1])
        s, t = deformer.intersection(E1, I1, bardir, (-sin_oangle, cos_oangle))
        G1 = (E1[0] + s * bardir[0],
              E1[1] + s * bardir[1])
        s, t = deformer.intersection(E2, I2, bardir, (-sin_oangle, cos_oangle))
        G2 = (E2[0] + s * bardir[0],
              E2[1] + s * bardir[1])
        # at the inner strokes: use curvature zero at both ends
        C1 = B1
        C2 = B2
        # at the outer strokes: use curvature zero only at the connection to
        # the straight part
        F1 = (outerextracurved * G1[0] + (1 - outerextracurved) * E1[0],
              outerextracurved * G1[1] + (1 - outerextracurved) * E1[1])
        F2 = (outerextracurved * G2[0] + (1 - outerextracurved) * E2[0],
              outerextracurved * G2[1] + (1 - outerextracurved) * E2[1])
        # the tip of the outer stroke, endpoints of the bezier curve
        H1 = (I1[0] - outer_cap_param * othick_pt * sin_oangle,
              I1[1] + outer_cap_param * othick_pt * cos_oangle)
        H2 = (I2[0] - outer_cap_param * othick_pt * sin_oangle,
              I2[1] + outer_cap_param * othick_pt * cos_oangle)

        #for qq in [A1,B1,C1,D1,E1,F1,G1,H1,I1,
        #           A2,B2,C2,D2,E2,F2,G2,H2,I2,
        #           O,P
        #           ]:
        #    cc.fill(path.circle(qq[0], qq[1], 0.5), [color.rgb.green])

        # now build the right halfbrace
        bracepath = path.path(path.moveto_pt(*A1))
        bracepath.append(path.curveto_pt(B1[0], B1[1], C1[0], C1[1], D1[0], D1[1]))
        bracepath.append(path.lineto_pt(E1[0], E1[1]))
        bracepath.append(path.curveto_pt(F1[0], F1[1], G1[0], G1[1], H1[0], H1[1]))
        # the tip of the right halfbrace
        bracepath.append(path.curveto_pt(I1[0], I1[1], I2[0], I2[1], H2[0], H2[1]))
        # the rest of the right halfbrace
        bracepath.append(path.curveto_pt(G2[0], G2[1], F2[0], F2[1], E2[0], E2[1]))
        bracepath.append(path.lineto_pt(D2[0], D2[1]))
        bracepath.append(path.curveto_pt(C2[0], C2[1], B2[0], B2[1], A2[0], A2[1]))
        # the tip in the middle of the brace
        bracepath.append(path.curveto_pt(O[0], O[1], O[0], O[1], P[0], P[1]))

        return bracepath
    # >>>

    def _bracepath(self, x0_pt, y0_pt, x1_pt, y1_pt): # <<<
        height_pt = unit.topt(self.totalheight)
        totallength_pt = math.hypot(x1_pt - x0_pt, y1_pt - y0_pt)
        leftlength_pt = self.middlerelpos * totallength_pt
        rightlength_pt = totallength_pt - leftlength_pt
        ithick_pt = unit.topt(self.innerstrokesthickness)
        othick_pt = unit.topt(self.outerstrokesthickness)
        bthick_pt = unit.topt(self.barthickness)

        # create the left halfbrace with positive slanting
        # because we will mirror this part
        cos_iangle = math.cos(math.radians(0.5*self.innerstrokesangle - self.slantstrokesangle))
        sin_iangle = math.sin(math.radians(0.5*self.innerstrokesangle - self.slantstrokesangle))
        cos_oangle = math.cos(math.radians(self.outerstrokesangle - self.slantstrokesangle))
        sin_oangle = math.sin(math.radians(self.outerstrokesangle - self.slantstrokesangle))
        cos_slangle = math.cos(math.radians(-self.slantstrokesangle))
        sin_slangle = math.sin(math.radians(-self.slantstrokesangle))
        ilength_pt = self.innerstrokesrelheight * height_pt / cos_iangle
        olength_pt = self.outerstrokesrelheight * height_pt / cos_oangle

        bracepath = self._halfbracepath_pt(leftlength_pt, height_pt,
          ilength_pt, olength_pt, ithick_pt, othick_pt, bthick_pt, cos_iangle,
          sin_iangle, cos_oangle, sin_oangle, cos_slangle,
          sin_slangle).reversed().transformed(trafo.mirror(90))

        # create the right halfbrace with negative slanting
        cos_iangle = math.cos(math.radians(0.5*self.innerstrokesangle + self.slantstrokesangle))
        sin_iangle = math.sin(math.radians(0.5*self.innerstrokesangle + self.slantstrokesangle))
        cos_oangle = math.cos(math.radians(self.outerstrokesangle + self.slantstrokesangle))
        sin_oangle = math.sin(math.radians(self.outerstrokesangle + self.slantstrokesangle))
        cos_slangle = math.cos(math.radians(-self.slantstrokesangle))
        sin_slangle = math.sin(math.radians(-self.slantstrokesangle))
        ilength_pt = self.innerstrokesrelheight * height_pt / cos_iangle
        olength_pt = self.outerstrokesrelheight * height_pt / cos_oangle

        bracepath = bracepath << self._halfbracepath_pt(rightlength_pt, height_pt,
        ilength_pt, olength_pt, ithick_pt, othick_pt, bthick_pt, cos_iangle,
        sin_iangle, cos_oangle, sin_oangle, cos_slangle,
        sin_slangle)

        return bracepath.transformed(
          # two trafos for matching the given endpoints
          trafo.translate_pt(x0_pt, y0_pt) *
          trafo.rotate_pt(math.degrees(math.atan2(y1_pt-y0_pt, x1_pt-x0_pt))) *
          # one trafo to move the brace's left outer stroke to zero
          trafo.translate_pt(leftlength_pt, 0))
    # >>>

    def decorate(self, dp, texrunner):
        dp.ensurenormpath()
        x0_pt, y0_pt = dp.path.atbegin_pt()
        x1_pt, y1_pt = dp.path.atend_pt()
        if self.reverse:
            x0_pt, y0_pt, x1_pt, y1_pt = x1_pt, y1_pt, x0_pt, y0_pt
        if self.stretch is not None:
            xm, ym = 0.5*(x0_pt+x1_pt), 0.5*(y0_pt+y1_pt)
            x0_pt, y0_pt = xm + self.stretch*(x0_pt-xm), ym + self.stretch*(y0_pt-ym)
            x1_pt, y1_pt = xm + self.stretch*(x1_pt-xm), ym + self.stretch*(y1_pt-ym)
        if self.dist is not None:
            d = unit.topt(self.dist)
            dx, dy = dp.path.rotation_pt(dp.path.begin()).apply_pt(0, 1)
            x0_pt += d*dx; y0_pt += d*dy
            dx, dy = dp.path.rotation_pt(dp.path.end()).apply_pt(0, 1)
            x1_pt += d*dx; y1_pt += d*dy
        dp.ornaments.fill(self._bracepath(x0_pt, y0_pt, x1_pt, y1_pt), self.fillattrs)

brace.clear = attr.clearclass(brace)

leftbrace  = brace(reverse=0, middlerelpos=0.55, innerstrokesrelheight=0.6, outerstrokesrelheight=0.7, slantstrokesangle=-10)
rightbrace = brace(reverse=1, middlerelpos=0.45, innerstrokesrelheight=0.6, outerstrokesrelheight=0.7, slantstrokesangle=10)
belowbrace = brace(reverse=1, middlerelpos=0.55, innerstrokesrelheight=0.7, outerstrokesrelheight=0.9, slantstrokesangle=-10)
abovebrace = brace(reverse=0, middlerelpos=0.45, innerstrokesrelheight=0.7, outerstrokesrelheight=0.9, slantstrokesangle=-10)
straightbrace = brace(innerstrokesrelheight=0.5, outerstrokesrelheight=0.5,
        innerstrokesangle=30, outerstrokesangle=30, slantstrokesangle=0,
        innerstrokessmoothness=1.0, outerstrokessmoothness=1.0)