1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
#!/usr/bin/env python
# -*- coding: ISO-8859-1 -*-
#
#
# Copyright (C) 2004 Andr Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (https://pyx-project.org/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
import numpy
def sum(list):
# we can assume len(list) != 0 here (and do not start from the scalar 0)
sum = list[0]
for item in list[1:]:
sum += item
return sum
def product(list):
# we can assume len(list) != 0 here (and do not start from the scalar 1)
product = list[0]
for item in list[1:]:
product *= item
return product
class scalar:
# represents a scalar variable or constant
def __init__(self, value=None, name="unnamed_scalar"):
self._scalar = None
if value is not None:
self.set(value)
self.name = name
def scalar(self):
return self
def addend(self):
return addend([self])
def polynom(self):
return self.addend().polynom()
def __neg__(self):
return -self.addend()
def __add__(self, other):
return self.polynom() + other
__radd__ = __add__
def __sub__(self, other):
return self.polynom() - other
def __rsub__(self, other):
return -self.polynom() + other
def __mul__(self, other):
return self.addend()*other
__rmul__ = __mul__
def __div__(self, other):
return self.addend()/other
def is_set(self):
return self._scalar is not None
def set(self, value):
if self.is_set():
raise RuntimeError("scalar already defined")
try:
self._scalar = float(value)
except Exception:
raise RuntimeError("float expected")
def get(self):
if not self.is_set():
raise RuntimeError("scalar not yet defined")
return self._scalar
def __float__(self):
return self.get()
def __str__(self):
if self.is_set():
return "%s{=%s}" % (self.name, self._scalar)
else:
return self.name
class addend:
# represents a addend, i.e. list of scalars to be multiplied by each other
def __init__(self, scalars):
self._scalars = [scalar.scalar() for scalar in scalars]
if not len(self._scalars):
raise RuntimeError("empty scalars not allowed")
def addend(self):
return self
def polynom(self):
return polynom([self])
def __neg__(self):
return addend([scalar(-1)] + self._scalars)
def __add__(self, other):
return self.polynom() + other
__radd__ = __add__
def __sub__(self, other):
return self.polynom() - other
def __rsub__(self, other):
return -self.polynom() + other
def __mul__(self, other):
try:
other = other.addend()
except (TypeError, AttributeError):
try:
other = scalar(other)
except RuntimeError:
return other * self
else:
return addend(self._scalars + [other])
else:
return addend(self._scalars + other._scalars)
__rmul__ = __mul__
def __div__(self, other):
return addend([scalar(1/other)] + self._scalars)
def __float__(self):
return product([float(scalar) for scalar in self._scalars])
def is_linear(self):
return len([scalar for scalar in self._scalars if not scalar.is_set()]) < 2
def prefactor(self):
assert self.is_linear()
setscalars = [scalar for scalar in self._scalars if scalar.is_set()]
if len(setscalars):
return float(addend(setscalars))
else:
return 1
def variable(self):
assert self.is_linear()
unsetscalars = [scalar for scalar in self._scalars if not scalar.is_set()]
if len(unsetscalars):
assert len(unsetscalars) == 1
return unsetscalars[0]
else:
return None
def __str__(self):
return " * ".join([str(scalar) for scalar in self._scalars])
class polynom:
# represents a polynom, i.e. a list of addends to be summed up
def __init__(self, polynom):
self._addends = [addend.addend() for addend in polynom]
if not len(self._addends):
raise RuntimeError("empty polynom not allowed")
def polynom(self):
return self
def __neg__(self):
return polynom([-addend for addend in self._addends])
def __add__(self, other):
try:
other = other.polynom()
except (TypeError, AttributeError):
other = scalar(other).polynom()
return polynom(self._addends + other._addends)
__radd__ = __add__
def __sub__(self, other):
return -other + self
def __rsub__(self, other):
return -self + other
def __mul__(self, other):
return sum([addend*other for addend in self._addends])
__rmul__ = __mul__
def __div__(self, other):
return polynom([addend/other for addend in self._addends])
def __float__(self):
return sum([float(addend) for addend in self._addends])
def is_linear(self):
is_linear = 1
for addend in self._addends:
is_linear = is_linear and addend.is_linear()
return is_linear
def __str__(self):
return " + ".join([str(addend) for addend in self._addends])
def solve(self, solver):
solver.addequation(self)
class vector:
# represents a vector, i.e. a list of scalars (or polynoms)
def __init__(self, dimension_or_values, name="unnamed_vector"):
try:
name + ""
except Exception:
raise RuntimeError("a vectors name should be a string (you probably wanted to write vector([x, y]) instead of vector(x, y))")
try:
for value in dimension_or_values:
pass
except Exception:
# dimension
self._items = [scalar(name="%s[%i]" % (name, i))
for i in range(dimension_or_values)]
else:
# values
self._items = []
for value in dimension_or_values:
try:
value.polynom()
except (TypeError, AttributeError):
self._items.append(scalar(value=value, name="%s[%i]" % (name, len(self._items))))
else:
self._items.append(value)
if not len(self._items):
raise RuntimeError("empty vector not allowed")
self.name = name
def __len__(self):
return len(self._items)
def __getitem__(self, i):
return self._items[i]
def __getattr__(self, attr):
if attr == "x":
return self[0]
if attr == "y":
return self[1]
if attr == "z":
return self[2]
else:
raise AttributeError(attr)
def vector(self):
return self
def __neg__(self):
return vector([-item for item in self._items])
def __add__(self, other):
other = other.vector()
if len(self) != len(other):
raise RuntimeError("vector length mismatch in add")
return vector([selfitem + otheritem for selfitem, otheritem in zip(self._items, other._items)])
__radd__ = __add__
def __sub__(self, other):
return -other + self
def __rsub__(self, other):
return -self + other
def __mul__(self, other):
try:
other = other.vector()
except (TypeError, AttributeError):
return vector([item*other for item in self._items])
else:
# scalar product
if len(self) != len(other):
raise RuntimeError("vector length mismatch in scalar product")
return sum([selfitem*otheritem for selfitem, otheritem in zip(self._items, other._items)])
def __rmul__(self, other):
return vector([other*item for item in self._items])
# We do not allow for vector * <matrix-like-object> here (i.e. a
# simulating the behaviour of a dual vector). In principle we could do
# that, but for transformations it would lead to (a*X)*c != a*(X*c).
# Hence we disallow vector*X for X being something else that a scalar.
def __div__(self, other):
return vector([item/other for item in self._items])
def __str__(self):
return "%s{=(%s)}" % (self.name, ", ".join([str(item) for item in self._items]))
def solve(self, solver):
for item in self._items:
solver.addequation(item)
class zerovector(vector):
def __init__(self, dimension, name="0"):
vector.__init__(self, [0 for i in range(dimension)], name)
class matrix:
# represents a matrix, i.e. a 2d list of scalars (or polynoms)
def __init__(self, dimensions_or_values, name="unnamed_matrix"):
try:
name + ""
except Exception:
raise RuntimeError("a matrix name should be a string (you probably wanted to write matrix([x, y]) instead of matrix(x, y))")
try:
for row in dimensions_or_values:
for col in row:
pass
except Exception:
# dimension
self._numberofrows, self._numberofcols = [int(x) for x in dimensions_or_values]
self._rows = [[scalar(name="%s[%i, %i]" % (name, row, col))
for col in range(self._numberofcols)]
for row in range(self._numberofrows)]
else:
# values
self._rows = []
self._numberofcols = None
for row in dimensions_or_values:
_cols = []
for col in row:
try:
col.polynom()
except (TypeError, AttributeError):
_cols.append(scalar(value=col, name="%s[%i, %i]" % (name, len(self._rows), len(_cols))))
else:
_cols.append(col)
self._rows.append(_cols)
if self._numberofcols is None:
self._numberofcols = len(_cols)
elif self._numberofcols != len(_cols):
raise RuntimeError("column length mismatch")
self._numberofrows = len(self._rows)
if not self._numberofrows or not self._numberofcols:
raise RuntimeError("empty matrix not allowed")
self.name = name
# instead of __len__ two methods to fetch the matrix dimensions
def getnumberofrows(self):
return self._numberofrows
def getnumberofcols(self):
return self._numberofcols
def __getitem__(self, xxx_todo_changeme):
(row, col) = xxx_todo_changeme
return self._rows[row][col]
def matrix(self):
return self
def __neg__(self):
return matrix([[-col for col in row] for row in self._rows])
def __add__(self, other):
other = other.matrix()
if self._numberofrows != other._numberofrows or self._numberofcols != other._numberofcols:
raise RuntimeError("matrix geometry mismatch in add")
return matrix([[selfcol + othercol
for selfcol, othercol in zip(selfrow, otherrow)]
for selfrow, otherrow in zip(self._rows, other._rows)])
__radd__ = __add__
def __sub__(self, other):
return -other + self
def __rsub__(self, other):
return -self + other
def __mul__(self, other):
try:
other = other.matrix()
except (TypeError, AttributeError):
try:
other = other.vector()
except (TypeError, AttributeError):
return matrix([[col*other for col in row] for row in self._rows])
else:
if self._numberofcols != len(other):
raise RuntimeError("size mismatch in matrix vector product")
return vector([sum([col*otheritem
for col, otheritem in zip(row, other)])
for row in self._rows])
else:
if self._numberofcols != other._numberofrows:
raise RuntimeError("size mismatch in matrix product")
return matrix([[sum([self._rows[row][i]*other._rows[i][col]
for i in range(self._numberofcols)])
for col in range(other._numberofcols)]
for row in range(self._numberofrows)])
def __rmul__(self, other):
try:
other = other.vector()
except (TypeError, AttributeError):
return matrix([[other*col for col in row] for row in self._rows])
else:
if self._numberofrows != len(other):
raise RuntimeError("size mismatch in matrix vector product")
return vector([sum([other[i]*self._rows[i][col]
for i in range(self._numberofrows)])
for col in range(self._numberofcols)])
def __div__(self, other):
return matrix([[col/other for col in row] for row in self._rows])
def __str__(self):
return "%s{=(%s)}" % (self.name, ", ".join(["(" + ", ".join([str(col) for col in row]) + ")" for row in self._rows]))
def solve(self, solver):
for row in self._rows:
for col in row:
solver.addequation(col)
class identitymatrix(matrix):
def __init__(self, dimension, name="I"):
def eq(row, col):
if row == col:
return 1
else:
return 0
matrix.__init__(self, [[eq(row, col) for col in range(dimension)] for row in range(dimension)], name)
class trafo:
# represents a transformation, i.e. matrix and a constant vector
def __init__(self, dimensions_or_values, name="unnamed_trafo"):
try:
name + ""
except Exception:
raise RuntimeError("a trafo name should be a string (you probably wanted to write trafo([x, y]) instead of trafo(x, y))")
if len(dimensions_or_values) != 2:
raise RuntimeError("first parameter of a trafo must contain two elements: either two dimensions or a matrix and a vector")
try:
numberofrows, numberofcols = [int(x) for x in dimensions_or_values]
except Exception:
self._matrix = dimensions_or_values[0].matrix()
self._vector = dimensions_or_values[1].vector()
if self._matrix.getnumberofrows() != len(self._vector):
raise RuntimeError("size mismatch between matrix and vector")
else:
self._matrix = matrix((numberofrows, numberofcols), name=name + "_matrix")
self._vector = vector(numberofrows, name=name + "_vector")
self.name = name
def trafo(self):
return self
def getmatrix(self):
return self._matrix
def getvector(self):
return self._vector
def __neg__(self):
return trafo((-self._matrix, -self._vector))
def __add__(self, other):
other = other.trafo()
return trafo((self._matrix + other._matrix, self._vector + other._vector))
__radd__ = __add__
def __sub__(self, other):
return -other + self
def __rsub__(self, other):
return -self + other
def __mul__(self, other):
try:
other = other.trafo()
except (TypeError, AttributeError):
try:
other = other.vector()
except (TypeError, AttributeError):
return trafo((self._matrix * other, self._vector * other))
else:
return self._matrix * other + self._vector
else:
return trafo((self._matrix * other._matrix, self._vector + self._matrix * other._vector))
def __rmul__(self, other):
return trafo((other * self._matrix, other * self._vector))
def __div__(self, other):
return trafo((self._matrix/other, self._vector/other))
def __str__(self):
return "%s{=(matrix: %s, vector: %s)}" % (self.name, self._matrix, self._vector)
def solve(self, solver):
self._matrix.solve(solver)
self._vector.solve(solver)
class identitytrafo(trafo):
def __init__(self, dimension, name="I"):
trafo.__init__(self, (identitymatrix(dimension, name=name),
zerovector(dimension, name=name)), name)
class Solver:
# linear equation solver
def __init__(self):
self.eqs = [] # scalar equations not yet solved (a equation is a polynom to be zero)
def eq(self, lhs, rhs=None):
if rhs is None:
eq = lhs
else:
eq = lhs - rhs
eq.solve(self)
def addequation(self, equation):
# the equation is just a polynom which should be zero
self.eqs.append(equation.polynom())
# try to solve some combinations of linear equations
while 1:
for eqs in self.combine(self.eqs):
if self.solve(eqs):
break # restart for loop
else:
break # quit while loop
def combine(self, eqs):
# create combinations of linear equations
if not len(eqs):
yield []
else:
for x in self.combine(eqs[1:]):
yield x
if eqs[0].is_linear():
for x in self.combine(eqs[1:]):
yield [eqs[0]] + x
def solve(self, eqs):
# try to solve a set of linear equations
l = len(eqs)
if l:
vars = []
for eq in eqs:
for addend in eq._addends:
var = addend.variable()
if var is not None and var not in vars:
vars.append(var)
if len(vars) == l:
a = numpy.zeros((l, l), numpy.float)
b = numpy.zeros((l, ), numpy.float)
for i, eq in enumerate(eqs):
for addend in eq._addends:
var = addend.variable()
if var is not None:
a[i, vars.index(var)] += addend.prefactor()
else:
b[i] -= addend.prefactor()
for i, value in enumerate(numpy.linalg.solve(a, b)):
vars[i].set(value)
for eq in eqs:
i, = [i for i, selfeq in enumerate(self.eqs) if selfeq == eq]
del self.eqs[i]
return 1
elif len(vars) < l:
raise RuntimeError("equations are overdetermined")
return 0
solver = Solver()
|