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1. INTRODUCTION 

PyXRD is a computer model developed in Python for the simulation of 
1-dimensional X-ray diffraction patterns for mixed-layer minerals. It 
has been developed keeping a multi-specimen full profile fitting 
strategy in mind. It allows for (semi-)quantification of mixed-layer 
phases by combining several observed XRD patterns and can perform 
automatic parameter refinements using several aglorithms. 

This document provides for a general overview of the theoretical 
background on which this model is based, an overview of the actual 
implementation (code-wise). The online version of this manual also 
contains instructions on how the general user interface (GUI) written 
in GTK can be used to create and modify models. 

For more detailed information we kindly refer to the source 
documentation and if that is failing, the source code itself. 

If any mistakes are discovered in this document please inform me at 
mathijs.dumon@ugent.be 
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2. LICENSE 

#########################################################################

####### 

                                     PyXRD                                      

    A python implementation of the matrix algorithm developed for the X-ray     

        diffraction analysis of disordered lamellar structures 

          

                     Copyright (c) 2013-2014, Mathijs Dumon                        

 

       This software is licensed under a BSD-2 Clause ("FreeBSD") License,        

   except for the mvc module, which is a derived work from the pygtkmvc library 

             and is accordingly licensed under a GNU LGPL 2 license. 

        You should have received a copy of the GNU Library General Public        

       License along with this library; if not, write to the Free Software       

               Foundation, Inc., 51 Franklin Street, Fifth Floor,                

                           Boston, MA 02110-1301 USA                            

 

#########################################################################

####### 

All rights reserved - BSD-2-Clause ("FreeBSD") License. 

 

Redistribution and use in source and binary forms, with or without modification, 

are permitted provided that the following conditions are met: 

 

- Redistributions of source code must retain the above copyright notice, 

  this list of conditions and the following disclaimer. 

 

- Redistributions in binary form must reproduce the above copyright notice, 

  this list of conditions and the following disclaimer in the documentation 

  and/or other materials provided with the distribution. 
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 

AND 

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 

FOR 

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 

ON 

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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3. INSTALLATION 

3.1. WINDOWS 

As of PyXRD v0.6.2 there are two options for windows users: (i) either 
manually install all the dependencies and PyXRD or (ii) use a custom 
installer which will install PyXRD and all of its dependencies for you. 

Note that when using the bundled installer, DEAP is not installed. You 
will still need to follow the instructions in section 3.1.3 

3.1.1. BUNDLED INSTALLER 

Download and run the bundled installer: 

https://github.com/mathijs-
dumon/PyXRD/releases/download/v0.6.9/PyXRD-0.6.9-win32-
bundle.exe 

For most of the dependencies this does not require input from your 
side. However, for the Numpy and Scipy libraries there is currently no 
easy way to completely automate the installation. As a result, you will 
have to click 'Next' and/or 'Finish' a few times to complete the 
installation for these libraries. 

Note that this is still an experimental feature. If you encounter 
problems, please report them by e-mail (mathijs.dumon@ugent.be) 
and continue by following the instructions for manual installation 
below. 

3.1.2. MANUAL INSTALL 

The installation is a bit lengthy because PyXRD depends on a number 
of third-party python modules. Work has started to create a unified 
installer, but for now you'll have to install them manually. These are 
the dependencies (more recent versions should also work, except for 
python which needs to be version 2.7): 

• Python: http://www.python.org/ftp/python/2.7.8/python-
2.7.8.msi 
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• PyGTK: 
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24
/pygtk-all-in-one-2.24.2.win32-py2.7.msi 

• Numpy: 
http://sourceforge.net/projects/numpy/files/NumPy/1.7.0/nu
mpy-1.7.0-win32-superpack-python2.7.exe/download 

• Scipy:http://sourceforge.net/projects/scipy/files/scipy/0.14.0/
scipy-0.14.0-win32-superpack-python2.7.exe/download 

• Matplotlib: 
https://downloads.sourceforge.net/project/matplotlib/matplo
tlib/matplotlib-1.2.1/matplotlib-1.2.1.win32-py2.7.exe 

• Pyparsing: 
http://sourceforge.net/projects/pyparsing/files/pyparsing/pyp
arsing-2.0.3/pyparsing-2.0.3.win32-py2.7.exe/download 

• Setuptools: https://bootstrap.pypa.io/ez_setup.py 

1. Download the script somewhere you can find it (e.g. the 
desktop) 

2. Open a command line as administrator 
(Start button → Search → enter 'cmd.exe' → right-click 
the command line icon and select 'Run as 
adiministrator') 

3. Enter the following command (replace the path to 
ez_setup to where you have downloaded it): 
C:\Python27\python.exe 

c:\users\myusername\Desktop\ez_setup.py 
This assumes you have installed python in C:\Python27 
(the default location), if not change the command 
accordingly. 

Finally download and install PyXRD: 
https://github.com/mathijs-
dumon/PyXRD/releases/download/v0.6.9/PyXRD-0.6.9.win32.exe 

3.1.3. INSTALLATION OF DEAP 

You can optionally install DEAP which will provide evolutionary 
refinement algorithms: 
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1. Open a command line as administrator 
(Start button → Search → enter 'cmd.exe' → right-click the 
command line icon and select 'Run as adiministrator') 

2. Enter the following command:  
C:\Python27\Scripts\easy_install.exe deap 
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3.2. LINUX 

Installation on linux should be straightforward, first install Python 2.7 
and PyGTK: 

• Debian/Ubuntu/... 
sudo apt-get install python python-gtk2 

• Fedora/Red Hat/... (untested) 
sudo yum install python python-gtk 

• OpenSuSE (untested) 
sudo yum install python python-gtk 

Then you can choose to either install the dependencies from your 
package manager repositories or using pip or easy_install. Usually it is 
preferable to use the binaries from the package manager as you will 
not need to install them by hand. The dependencies are: 

• Numpy >= 1.7.0 

• Scipy >= 0.14.0 

• Matplotlib >= 1.2.1 

• Pyparsing >= 2.0.4 

• Setuptools 

And the corresponding commands would be: 

• Debian/Ubuntu/... 
sudo apt-get install python-numpy python-scipy python-matplotlib 

• Fedora/Red Hat/... (untested) 
sudo yum install python python-gtk python-numpy python-scipy  python-

matplotlib 

• OpenSuSE (untested) 
sudo yum install python python-gtk python-numpy python-scipy  python-

matplotlib 

Once this has been completed, open a terminal and enter these 
commands: 
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 sudo easy_install pip 

 pip install --user 'pyxrd>=0.6.9' 

This will install everything under your '~/.local' folder. To run PyXRD 
type in the following: 

 ~/.local/bin/PyXRD 

or make a shortcut to this command. 

4. THEORETICAL BACKGROUND 

4.1. GENERAL MATHEMATICAL FORMALISM 

The mathematical formalisms on which PyXRD is based is described in 
a number of articles and books published over the years. Relevant 
references can be found at the end of this section. Below an overview 
will be given of the different parts of the general matrix formalism. 

The general matrix formalism (described in detail in Drits & Tchoubar 
(1990)) allows to calculate the diffraction pattern for a single mixed-
layer phase A as: 

I (s) ∝
⋅

⋅ Ξ ⋅ ∑ α(n)∫ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [R]} ⋅ T (U) ⋅ p(ϕ) ⋅ dϕ (eq. 

box 1) 

in which: 

I (s) the intensity diffracted by phase A at reciprocal 
space value s 

wf  the weigth fraction of phase A in the mixture 
ρ  is the density for an average unit cell in mixed 

layer phase A composed of G different 

components,calculated as ∑
⋅

,in which 

M  is the total atomic mass for a unit cell of 
component g, V  is the volume of the unit cell for 
component g and W  is the relative fraction of 
components of type g in the mixed-layer phase A 

V  is the average unit cell for phase A, calculated as 
∑ W ⋅ V  

Ξ is the Lorentz-polarisation factor, including a 
correction for the imperfect orientation of 
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particles (also known as the powder ring 
distribution factor), (see chapter 20) 

α(n) is the fraction of crystallites with a coherent 
scattering domain size (CSDS) of n layers (see 
chapter 19) 

[F] the structure factor matrix (see chapter 13); 
[W]  the weight fraction matrix (see chapter 25); 
[R] is defined as [R] = [I] + 2 ⋅ ∑ ⋅ [Q]  in 

which [I] is the identity matrix, M the number of 
layers in the considered CSDS and [Q] is the 
nearest neighbour phase difference matrix (see 
chapter 16) 

T (U) is the mean area of the coherent scatter domain 
with n layers, which can be approximated by n ⋅
c = n ⋅ ∑ c ⋅ W  in which c is the average d-
spacing and c  is the d-spacing of g-th 
component 

p(ϕ) is the (normalized) probability of finding a layer 
deviating ϕ radians from perfect orientation 

 
In the following sections, the calculation of each of the matrices and 

functions is explained in more detail. 

4.2. LENGTH OF THE RECIPROCAL VECTOR: S 

The length of the reciprocal vector (commonly denoted as s⃗) can be 
expressed as: 

|s⃗| = s =
⋅

 (eq. box 2) 

in which: 

θ the angle of the incident X-ray bundle 
λ the wavelength of the X-ray waves 

It relates with Bragg's formula like this: 

2 ⋅ d ⋅ sin(θ) = n ⋅ λ
⋅ ( )

= = s
 (eq. box 3) 
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4.3. CALCULATION OF THE STRUCTURE FACTOR MATRIX F 

4.3.1. GENERAL 

The actual size of the F and Q matrices depends on the Reichweite of 
the model. Therefore this section is split in two parts: first the setup of 
the structure factor matrix for R0 and R1 models is explained, and  then 
it is explained how that matrix can be scaled to match the higher 
Reichweite models. The basis for this elaboration is based for the larger 
part on principles and examples found in Drits & Tchoubar (1990). 

LAYOUT FOR R0 AND R1 MODELS 

The structure factor matrix F then has the following definition: 

F = [

F F* F F* . . . F F*

F F* F F* . . . F F*

. . . . . . . . . . . .
F F* F F* . . . F F*

] (eq. box 4) 

in which: 

F  the structure factor for the g-th component (see 
14) 

F* its complex conjugate 
 

The complete structure factor matrix F can be constructed from 
simpler matrices. First we create a 1D matrix Fa containing the 
structure factors for each component: 

F = [F F . . . F ] (eq. box 5) 

After this we create another 1D matrix Fb which is the transpose-
conjugated form of matrix Fa: 

F = F* = [

F*

F*

. . .
F*

]

 
 (eq. box 6) 

The structure factor matrix F can then be constructed by multiplying 
matrices Fb with Fa: 
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F = F ⋅ F = F* ⋅ F

F = [

F*

F*

. . .
F*

] ⋅ [F F . . . F ]

F = [

F F* F F* . . . F F*

F F* F F* . . . F F*

. . . . . . . . . . . .
F F* F F* . . . F F*

]

 (eq. box 7) 

SCALING FOR HIGHER REICHWEITE MODELS 

For models with R > 1 the matrix needs to be of size GR. To accomplish 
this, each pair of structure factors  is replaced with a sub-matrix of size 
GR-1 of the form: 

F = [

F F* F F* . . . F F*

F F* F F* . . . F F*

. . . . . . . . . . . .
F F* F F* . . . F F*

] (eq. box 8) 

With other words, each pair of structure factors is replaced with a 
'sub-matrix' of size GR-1 in which each element is a duplicate of the 
replaced pair of structure factors. 

4.3.2. STRUCTURE FACTOR FN FOR A COMPONENT 

The structure factor characterizing the X-ray scattering by an infinite, 
three-dimensional atomic motif can, in general, be written as: 

F (s) = ∑ f (s) ⋅ exp(2 ⋅ π ⋅ i ⋅ (
⋅

+
⋅

+
⋅
)) (eq. box 9) 

in which: 

m the number of atoms in the motif of the 
component 

fm(s) the scattering factor for the m-th atom 
xm, ym, zm the position of the m-th atom along the X, Y and 

Z axes of the motif (in nm) 
h, k, l the miller indices of the reflection being 

calculated 
a, b, c unit cell dimensions along the X, Y and Z axes of 

the motif (in nm) 
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s the length of the reciprocal vector (see chapter 
12) 

i the unreal number (= (−1)) 
However, since we are only interested in 00l-reflections, the h and k 

terms can be dropped  and the structure factor for this 1-dimensional 
atomic motif can be written as: 

F = ∑ f (s) ⋅ exp(2 ⋅ π ⋅ i ⋅
⋅
) (eq. box 10) 

According to Bragg's law, we can write (also see section 12): 

⋅ ( )
= = s (eq. box 11) 

Combining the above two relations and setting n=1 and l=1, we can 
write: 

F = ∑ f (s) ⋅ exp(2 ⋅ π ⋅ i ⋅ z ⋅ s) (eq. box 12) 

in which: 

m the number of atoms in the motif of the 
component 

fm(s) the scattering factor for the m-th atom (see 
chapter 16) 

zm the position of the m-th atom along the Z axis of 
the motif 

s the length of the reciprocal vector (see chapter 
12) 

i the unreal number (= (−1)) 
 

The complex conjugate of the structure factor is (see chapter 13): 

F* = ∑ f (s) ⋅ exp(−2 ⋅ π ⋅ i ⋅ z ⋅ s) (eq. box 13) 

This exponential relation can be transformed using Euler's formula 
into the sine and cosine form: 

F = ∑ f (s) ⋅ [cos(2 ⋅ π ⋅ i ⋅ z ⋅ s) + i ⋅ sin(2 ⋅ π ⋅ i ⋅ z ⋅ s)] (eq. box 14) 

The complex conjugate of this formula can then be written as: 

F* = ∑ f (s) ⋅ [cos(2 ⋅ π ⋅ i ⋅ z ⋅ s) − i ⋅ sin(2 ⋅ π ⋅ i ⋅ z ⋅ s)] (eq. box 15) 



16 Appendix A  

4.3.3. ATOMIC SCATTERING FACTOR FOR A SINGLE ATOM: FM 

The atomic scattering factor for a single atom is calculated using the 
Cromer-Mann coëfficiënts as published in Waasmaier and Kirfel (1995). 
The Debye constants are set to: 

0 for neutral atoms 
2 for anions 
1.5 for cations 

The atomic scattering factor is calculated as follows: 

f (s) = P ⋅ [c + ∑ (a ⋅ exp(−b ⋅
⋅
))] ∗ exp(−B ∗ s ) (eq. box 16) 

in which: 

Pm the number of atoms per unit cell at this z 
location (can be > 1 due to the projection on the 
Z-axis) 

c constant of the exponential approximation of 
the scattering factor 

ai the i-th a factor of the exponential 
approximation of the scattering factor 

bi the i-th b factor of the exponential 
approximation of the scattering factor 

s the length of the reciprocal vector (see chapter 
12) 

Bm the Debye constant for the m-th atom 
The factor 10 in the exponential part of the summation is there to 
convert the units of the reciprocal vector s from nanometer to 
Ångstrom (factor 10). 

4.4. CALCULATION OF THE PHASE FACTOR MATRIX Q 

4.4.1. GENERAL 

As explained in section 13, the actual size of the F and Q matrices 
depends on the Reichweite of the model. This section is also split in 
two parts: first the setup of the phase factor matrix for R0 and R1 
models is explained, and then it is explained how that matrix can be 
scaled to match the higher Reichweite models. 
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LAYOUT FOR R0 AND R1 MODELS 

The phase factor matrix Q is the Hadamard product (element-wise 
product, not the regular matrix multiplication) of two other matrixes: 

Q = [ϕ] ∘ P (eq. box 17) 

 

of which the first term can be defined as follows: 

 

[ϕ] = [

ϕ ϕ . . . ϕ
ϕ ϕ . . . ϕ
. . . . . . . . . . . .
ϕ ϕ . . . ϕ

] (eq. box 18) 

in which: 

φij the phase difference between the i-th and j-th 
component in the mixed-layer phase 

 

The matrix P contains the probability parameters. Its calculation is 
detailed in chapter 25 for different values of R and will not be discussed 
in further detail here. 

SCALING FOR HIGHER REICHWEITE MODELS 

For models with R > 1 the [ϕ] matrix needs to be of size GR. To 
accomplish this, each phase difference [ϕ ] is replaced with a sub-
matrix of size GR-1 of the form: 

[ϕ ] = [

ϕ ϕ . . . ϕ

ϕ ϕ . . . ϕ
. . . . . . . . . . . .
ϕ ϕ . . . ϕ

] (eq. box 19) 

With other words, each phase difference is replaced with a sub-matrix 
of size GR-1 in which each element is a duplicate of the replaced phase 
difference. 
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4.4.2. PHASE DIFFERENCE BETWEEN THE I-TH AND J-TH 

COMPONENTS Φ  

The phase difference depends on the distance between the 
components. If we define the i-th component as the one preceeding 
the j-th component, the phase difference depends on the basal spacing 
of that i-th component (and not of the j-th component): 

φ = e ⋅ ⋅ ⋅ ⋅ ⋅ e ⋅( ⋅ ⋅ ) = e ⋅ ⋅ ⋅( ⋅ ⋅ ⋅ ) (eq. box 20) 
in which: 

s the length of the reciprocal vector (see chapter 
12) 

i the unreal number (= (−1)) 
d  the basal spacing of the i-th component (nm) 
δ  the variation in the basal spacing of the i-th 

component (nm) 
 

In Plançon (2002) an equation can be found on how to insert variable 
d-spacings. A similar formulation can also be found in Drits & Tchoubar 
(1990, page 89), albeit with different constants. The latter has been 
implemented in PyXRD, as it matched with the output from Sybilla. It 
assumes a Gaussian distribution of the d-spacing around the default d 
spacing. 

F' = ∑ f (s) ⋅ e ⋅ ⋅ ⋅ ⋅ ⋅ e ⋅ ⋅ ⋅  (eq. box 21) 

in which: 

m the number of atoms in the motif of the 
component 

fm(s) the scattering factor for the m-th atom (see 
chapter 16) 

zm the position of the m-th atom along the Z axis of 
the motif 

s the length of the reciprocal vector (see chapter 
12) 

δ  the variable d-spacing standard deviation 
(assuming a Gaussian distribution) 

i the unreal number (= (−1)) 
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4.5. CALCULATION OF THE COHERENT SCATTERING DOMAIN SIZE 

(CSDS) DISTRIBUTION FUNCTION Α 

Several functions have been proposed in the past. Their definitions are 
detailed below. Currently in the model only a generic log-normal 
distribution and the log-normal distribution as proposed in Drits et al. 
(1997) are implemented. 

In general, the arithmetic mean CSDS can be calculated from whatever 
CSDS distribution function is used by: 

N = ∑ n ⋅ α(n) (eq. box 22) 

4.5.1. ERGUN MODEL (NOT IMPLEMENTED) 

One of the first CSDS distributions proposed is that of Ergun (1970): 

α(n) = exp( ) (eq. box 23) 

in which: 

n the CSDS value of interest 
δ the mean defect-free number of layers 

 
However, this simple model is not used often anymore and has been 

replaced by a log-normal CSDS distribution, as detailed in Drits et al. 
(1997). 

4.5.2. LOG-NORMAL MODELS 

The log-normal models assume a log-normal distribution of CSDS values. 

The basic definition is: 

α(n) =
⋅

⋅
⋅ exp(

( ( )–( ))

⋅
) (eq. box 24) 

in which: 

n the CSDS value of interest 
A the mean of the probability density function, 

defined as:  A = a ⋅ log(N) + a  
 in which a1 and a2 are empirical constants and N 

is the average CSDS. 
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B² the variance of the probability density function, 
defined as: 

 B = b ⋅ log(N) + b  
 in which b1 and b2 are empirical constants and 

N is the average CSDS. 
This model is implemented in PyXRD, together with a model which has 

pre-set values for the a , a , b  and b  parameters (according to Drits 
et al. (1997)): 

a   = 0.9485 
a   = 0.0170 
b  = 0.1032 
b   = 0.0034 
 

4.6. PREFERRED ORIENTATION 

A correction for preferred orientation of phases should be applied. The 
basis for these corrections was  laid by Reynolds (1986) and the 
importance of these corrections has recently been reiterated upon by 
Dohrmann et al. (2009). The effect of preferred orientation (calculated 
as ψ) is usually grouped with the Lorentz-Polarisation factor into Ξ: 

S =

Q =
√ ⋅ ( )⋅ *

ψ = erf
( )⋅√ ⋅

⋅ *⋅
− 2 ⋅ sin(θ) ⋅ ( )

Ξ =
( )

( )
⋅ ψ

 (eq. box 25) 

We also need to describe the distribution of the orientation of the 
particles in our sample. If our sample is well-oriented, we can assume 
a Gaussian distribution with a standard deviation σ* (Dohrmann et al., 
2009) so that the distribution fuction p(ϕ) becomes: 

p(ϕ) =
*⋅√ ⋅

⋅ e ⋅( *)  (eq. box 26) 

In the general equation, this function needs to be integrated over the 
entire domain of ϕ leading to: 

∫ p(ϕ)dϕ = ⋅ [1 + erf(
*⋅√

) − erf(
*⋅√

)] (eq. box 27) 
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Since for an oriented sample ϕ = 0 and ϕ ≫ σ*, we can 
approximate this: 

∫ p(ϕ)dϕ ≃ ⋅ [1 + 1 − 0] = 1 (eq. box 28) 

As a result, for an oriented sample, equation 1 becomes: 

I (s) ∝
⋅

⋅ Ξ ⋅ ∑ α(n) ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [R]} ⋅ T (U) (eq. box 29) 
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4.7. OPTIMIZATION OF THE FORMALISM 

The equation 29 can be further optimized to allow for a more efficient 
calculation process. 

If we drop in the relations given for T (U) and [R] detailed in chapter 
11, we arrive at: 

I (s) ∝
wf

ρ ⋅ V
⋅ Ξ

⋅ α(n) ⋅ n ⋅ c ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [[I] + 2 ⋅
n −m

n
⋅ [Q] ]} 

 (eq. box 30) 
 

Since α(n) and n are real numbers we can bring them inside the ℜ𝑇𝑟 
operators, and since c is independent of n we can take it out of the 
outermost summation, leading to: 

I (s) ∝
c ⋅ wf

ρ ⋅ V
⋅ Ξ

⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ α(n) ⋅ n ⋅ c ⋅ [[I] + 2 ⋅
n −m

n
⋅ [Q] ]} 

 (eq. box 31) 
 

In addition, since [F] and [W] are independent of n, we can take them 
out of the outer summation (together with the ℜ𝑇𝑟 operators), and 
re-write this as: 

I (s) ∝
c ⋅ wf

ρ ⋅ V
⋅ Ξ ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ α(n) ⋅ n ⋅ [[I] + 2

⋅
n −m

n
⋅ [Q] ]} 

 (eq. box 32) 
 

At this point we have already reduced calculating [F] ⋅ [W] M times to 
calculating it only once. But we can still improve this a little bit. 
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We can distribute the α(n) ⋅ n term over the sum of the identity matrix 
and the inner summation, which cancels the division by n in there. If 
we also split this summation of a sum in the sum of two summations, 
we arrive at: 

I (s) ∝
⋅

⋅
⋅ Ξ ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [∑ α(n) ⋅ n ⋅ [I] + 2 ⋅

∑ ∑ α(n) ⋅ (n −m) ⋅ [Q] ]} (eq. box 33) 
 

Since the arithmetic mean for the CSDS is defined as M = ∑ α(n) ⋅ n 
and [I] is independent of n, we can change this to: 

I (s) ∝
⋅

⋅
⋅ Ξ ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [M ⋅ [I] +

2 ⋅ ∑ ∑ α(n) ⋅ (n −m) ⋅ [Q]
⏟

[ ]

]}  

 (eq. box 34) 

The double summation term, indicated in equation 34 as [S], can now 
be considered separately. When we write this summation in full, we 
arrive at a sum of M – 1 summations, of which the first summation will 
have one term, and the last will have M-1 terms, or: 

[S] = ∑ ∑ α(n) ⋅ (n − m) ⋅ [Q] =

α(2) ⋅ [(2 − 1) ⋅ [Q] ]

+α(3) ⋅ [(3 − 1) ⋅ [Q] + (3 − 2) ⋅ [Q] ]
+⋯

+α(M) ⋅ [(M − 1) ⋅ [Q] + (M− 2) ⋅ [Q] +⋯+ (M− (M− 1)) ⋅ [Q] ]
⏟

( )terms

 (eq. 

box 35) 
 

Since these terms have a lot of Q  matrices in common, summing them 
in this way is rather time consuming (especially when Q has a high 
rank). This can be solved by re-grouping these common [Q]  terms as 
follows: 
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[S] = ∑ ∑ α(n) ⋅ (n −m) ⋅ [Q] =

[α(2) ⋅ (2 − 1) + α(3) ⋅ (3 − 1) + ⋯+ α(M) ⋅ (M − 1)]
⏟

( )terms

⋅ [Q]

+[α(3) ⋅ (3 − 2) + α(4) ⋅ (4 − 2) +⋯+ α(M) ⋅ (M − 2)]
⏟

( )terms

⋅ [Q]

+⋯
+[α(M) ⋅ (M − (M − 1))]

⏟
⋅ [Q]

 (eq. 

box 36) 
 

Which can be written as a summation again like this: 

[S] = ∑ ∑ α(n) ⋅ (n −m) ⋅ [Q] = ∑ [Q] ⋅ ∑ α(m) ⋅
(m − n) (eq. box 37) 

 

Now each [Q]  matrix is multiplied only once with a single factor for 
each value of n, which is a huge performance gain compared to 
multiplying each [Q]  matrix (M-1) times. 
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4.8. PROBABILITY MODELS 

4.8.1. INTRODUCTION 

The probability models are responsible for calculating the W and P 
matrices (see previous sections) containing the relative weight 
fractions and probability parameters respectively. The probability 
parameters are derived using Markovian statistics. The rank of the 
matrices depends on the number of components G in the mixed-layer 
and the Reichweite R. 

The Reichweite or Reach is an important concept. The value for R 
denotes what number of previous components (in a stack of 
components) still influence the probability determining the type of the 
following component. With other words, for: 

R=0; the type of the next component does not depend 
on the previous  components, 

R=1; the type of the next component depends on the 
type of the previous  component, 

R=2; the type of the next component depends on the 
types of the previous two components, 

etc. 
There are a number of general relations between the weight fractions 

W and probabilities P detailed below. They are valid regardless of the 
value of R or G. These are detailed below. For a more in-depth 
explanation we refer to Drits & Tchoubar (1990). For stacks composed 
of G types of layers, we can write: 

 
W = N N⁄ where i ∈ {1, 2,… , G}

W = N (N − 1)⁄ where i, j ∈ {1, 2,… , G}
W = N (N − 2)⁄ where i, j, k ∈ {1, 2,… , G}

⋮
etc. … …

 (eq. box 38) 

 with: 
W = W ⋅ P W = W ⋅ P …

∑ W = 1 ∑ ∑ W = 1 …

∑ P = 1 ∑ P = 1 …

 (eq. box 39) 
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In the following sections a description is made how to setup the 
matrices used in the calculations for different combinations of R and 
G. An important step in this process is the selection of independent 
parameters. A modeller is free to choose these, however for PyXRD it 
was chosen to make the definition of the independent parameters as 
much as possible identical to those used in the Sybilla® model created 
by Chevron ETC, to facilitate (future) exchange of models and 
comparison of results. 

W AND P MATRIX LAYOUTS 

The general expressions for the W and P matrix for different 
combinations of R and G can be generalized. To illustrate this, the 
matrices for an R0 or R1 model and for an R2 with G components model 
are shown below. 

The expressions for the W and P matrix for R0 and R1 models are: 

W = [

W 0 … 0
0 W … 0

⋮ ⋮ ⋮
0 0 … W

] (eq. box 40) 

P = [

P P … P
P P … P

⋮ ⋮ ⋮
P P … PGG

] (eq. box 41) 

 

Observe that these matrices are of size GxG. 
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For an R2 model, the basic layout is preserved, however each of the 
elements in the W and P matrices (e.g. W1 or P11) are replaced by sub-
matrices of size GxG: 

W = [

W 0 … 0
0 W … 0

⋮ ⋮ ⋮
0 0 … W

]

P = [

0 0 … 0
0 0 0
⋮ ⋮ ⋮
P P … P ← j-th row of the matrix
⋮ ⋮ ⋮
0 0 … 0

]

 (eq. box 42) 

This increases the size of the complete W or P matrix to G²xG². 

In general, for a model with a Reichweite R and G components, the 
final W and P matrix will have a size of GRxGR. They can be created 
using the general layout of equations 42 and by replacing the elements 
recursively G-1 times by sub-matrices of the following generalised 
form: 

W… = [

W…1 0 … 0
0 W…2 … 0

⋮ ⋮ ⋮
0 0 … W…G

]

P… = [

0 0 … 0
0 0 0
⋮ ⋮ ⋮
P…1 P…2 … P…G ← j-th row of the matrix
⋮ ⋮ ⋮
0 0 … 0

]

 (eq. box 43) 

The “…” indices are to be replaced with the indices of the parameters 
the sub-matrix is replacing in the parent matrix. E.g. when replacing 
the initial Wi elements for an R3 model, the “...” index would be 
replaced with the value of the “i” index of the replaced Wi parameter. 
The result will be a matrix containing Wij parameters. Since we are 
creating a matrix for an R3 model, there need to be in total 2 rounds 
of replacements. This means we need to replace every Wij parameter 
with another sub-matrix in which the “...” index is this time replaced 
with the value ij index values of the replaced Wij parameter. We have 
then made G-1 recursive replacements and the matrix will have a size 
of G3xG3 and contain parameters of the form Wijk. 
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PARAMETER AND MATRIX INDEXATION 

Simple relationships can be derived to obtain the matrix column and 
row indexes from the parameter indexes and vice-versa. 

W parameter indexes to column and row indexes: 

x = y = ∑ z ⋅ G  (eq. box 44) 

in which: 

 x the W matrix column index 

 y the W matrix row index 

 Z  the number of indexes in the W parameter (e.g. 2 for W11) 

 zi the value of the i-th W parameter index (e.g. z1 = 2 for W21) 

 G the number of components 

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1) 

The opposite relation for W parameters is: 

z = (⌊ ⌋modG) + 1 (eq. box 45) 

in which: 

 zi the value of the i-th W parameter index (e.g. z1 = 2 for W21) 

 G the number of components 

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1) 

 x the W matrix column index (can be replaced with the row 
index since   x=y) 

P parameter indexes to column and row indexes: 

  
x = ∑ z ⋅ G

y = ∑ z ⋅ G
 (eq. box 46) 

in which: 

 Z  the number of indexes in the P parameter (e.g. 3 for P123) 



  29 

 zi the value of the i-th W parameter index (e.g. z1 = 3 for P321) 

 G the number of components 

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1) 

 x the P matrix column index 

 y the P matrix row index 

The opposite relation for P parameters is: 

  

for i ∈ {1,2,… ,G}

z = (⌊ ⌋modG) + 1

for i = G:
z = (⌊ ⌋modG) + 1

 (eq. box 47) 

in which: 

 zi the value of the i-th W parameter index (e.g. z1 = 2 for W21) 

 G the number of components 

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1) 

 x the W matrix column index (can be replaced with the row 
index since   x=y) 
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4.8.2. R0 MODELS – RANDOM INTERLAYERING 

In this model the chance of finding any type of layer after another type 
of layer equals the relative weight of that layer in the whole stack. This 
type of disorder is actually a specific type of R1 ordering where for a 
stack containing G different types of layers we can write: 

P = W andW =W ∗ P = W ∗W

P = W andW =W ∗ P = W ∗W

P = W andW =W ∗ P = W ∗W
. . .

PgG = W andWgG = W ∗ PgG = W ∗W

withg ∈ {1,2,… , G}

 (eq. box 48) 

In addition to the above relations, the sum of all the relative weights 
should equal one (see equation box 39): 

W = 1 

Therefore, since we have G weight fraction parameters and we have 
G+1 relations, we only need to choose G-1 independent parameters to 
be able to calculate all weight fractions and related probabilities. These 
G-1 parameters are chosen as such so that they can all be described by 
the following weight fraction definition: 

Fw =
∑

withg ∈ {1,2,… , G − 1} (eq. box 49) 

Using the above definition we can derive that: 

W = Fw ∗ ∑ W for every g ∈ {1, 2,… , G} (eq. box 50) 

and using equation 39, we can also derive that: 

∑ W
⏟

= 1

= ∑ W +∑ W

∑ W = 1 − ∑ W for every g ∈ {1, 2,… , G}

 (eq. box 51) 

If we are considering the first ratio Fw1, then in equation 50 g = 1 and, 
using equation 39, can be written as: 

W = Fw ⋅ ∑ W
⏟

= 1
W = Fw

 (eq. box 52) 
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Or, with other words, the first fraction equals the weight fraction for 
the first component. Knowing this, the other weight fractions can be 
derived in sequence by combining the relations in boxes 50 and 51. E.g. 
for g = 2 we can write: 

W = Fw ⋅ ∑ W  (eq. box 53) 

and since: 

∑ W = 1 − ∑ W = 1 −W  (eq. box 54) 

the first expression becomes: 

W = Fw ⋅ (1 −W ) (eq. box 55) 

As can be derived from the above equations, these R0 expression can 
be extended for any number of components. In fact, the 
implementation in PyXRD comprises a generalised probability model 
that can handle any number of layers. In practice however, there is 
little need for a 100 component mixed layer model, so the upper limit 
has been set to 6 different components (for now). 
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4.8.3. R1 MODELS 

PyXRD has R1 models available for mixed-layers with up to 4 different 
components. 

TWO-COMPONENT R1 MODEL 

For two-component (G=2) R1 models, the independent parameters are 
W  and P (ifW ⩽ 0.5) or P (ifW > 0.5). The other parameters in this 
model can then be calculated using these two parameters: 

W = 1−W
ifW ⩽ 0.5:
P = 1 − P

P = W ⋅

P = 1 − P
ifW > 0.5:
P = 1 − P

P = W ⋅

P = 1 − P

 (eq. box 56) 
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THREE-COMPONENT R1 MODEL 

For three-component (G=3) R1 models, the first two independent 
parameters are identical to the two-component model: W  and either 
P (ifW ⩽ 0.5) or P (ifW > 0.5), the latter is defined as: 

P =  (eq. box 57) 

The other four parameters are chosen to be the following fractions: 

Fw =

Fw =

Fw =

Fw =

 (eq. box 58) 

The primary weight fractions W2 and W3 can be calculated as follows: 

W = (1 −W ) ⋅ Fw
W = 1 −W −W

 (eq. box 59) 

If W ⩽ 0.5: 

Since:
W =W +W +W ⇒ P =

W = W +W +W ⇒ P =

W = W +W +W ⇒ P =

We can write:
(P + P ) ⋅ W = W +W − (W +W +W +W ) = W +W −W

W = W +W −W ⋅ (P + P )

SinceP + P + P = 1we can change this to:
W = W +W −W ⋅ (1 − P )

 (eq. box 60) 

If W > 0.5: 

W = (1.0 −W ) ⋅ P  (eq. box 61) 

From that point on the calculation is fairly straightforward: 
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W =W ⋅ Fw ⋅ Fw
W = W ⋅ Fw ⋅ (1 − Fw )

P = ifW > 0else0

P = 1 − P − P

W = W ⋅ (1 − Fw ) ⋅ Fw
W = W ⋅ (1 − Fw ) ⋅ (1 − Fw )

P = ifW > 0else0

P = ifW > 0else0

P = 1 − P − P

P = ifW > 0else0

P = ifW > 0else0

P = 1 − P − P ifW > 0.5elseP is given

 (eq. box 62) 

At this point we know all probability parameters P . Together with the  
primary weight fractions W1, W2 and W3, it possible to calculate any 
unknown W  using the equations from box 39. 
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FOUR-COMPONENT R1 MODEL 

As with previous R1 models, the first two independent parameters are 
W  and either P (ifW ⩽ 0.5) or P (ifW > 0.5). The other 10 
parameters are chosen to be the following fractions: 

Fw = Fw =

Fw =
∑ ∑

Fw =
∑ ∑

Fw = Fw =

Fw = Fw =

Fw = Fw =

 (eq. box 63) 

 

Again, the primary weight fractions can be easily calculated from these 
fractions: 

W = (1 −W ) ⋅ Fw
W = (1 −W −W ) ⋅ Fw
W = 1 −W −W −W

 (eq. box 64) 

 

Then, if W1 ≤ 0.5, we can calculate Wxx using the following formula, 
derived in the same way as for the 3 component R1 model: 

W = W ⋅ (P − 1) +W +W +W  (eq. box 65) 

If W1 > 0.5 , Wxx is calculated as: 

W = P ⋅ (W +W +W ) (eq. box 66) 

From that point on the calculation is again fairly straightforward, first 
we calculate a number of partial sums: 

W = W +W +W = W ⋅ Fw
W = W +W +W +W +W +W = (W −W )

W = W +W +W = W ⋅ Fw

W = W +W +W = W −W

 (eq. box 67) 

 



36 Appendix A  

Then we can calculate some of the weight fractions and all of the 
probabilities as follows: 

W = Fw ⋅ W
W = Fw ⋅ (W −W )
W = W −W −W

W = Fw ⋅ W
W = Fw ⋅ (W −W )
W = W −W −W

W = Fw ⋅ W
W = Fw ⋅ (W −W )
W = W −W −W

 (eq. box 68) 

P = W W⁄ or ifW = 0:P = 0

P = W W⁄ or ifW = 0:P = 0

P = 1 − P − P − P

P = W W⁄ or ifW = 0:P = 0

P = W W⁄ or ifW = 0:P = 0

P = W W⁄ or ifW = 0:P = 0

P = 1 − P − P − P

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = 1 − P − P − P

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = 1 − P − P − P ifW > 0.5elseP isgiven

 (eq. box 69) 

At this point we know all probability parameters P . Together with the  
primary weight fractions W1, W2, W3 and W4, it possible to calculate any 
unknown W  using the equations from box 39. 
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4.8.4. R2 MODELS 

PyXRD has R2 models available for models with up to 3 different 
components. 

TWO-COMPONENT R2 MODEL 

This is one of the few exceptions where the choice of independent 
parameters differs from Sybilla. The reason is that Sybilla implements 
a restricted version, not allowing for the full range of possibilities. 
PyXRD does not have these constraints. The result is that PyXRD 
requires two more parameters (4 in tolal) compared with Sybilla. 

As with previous models, the first independent parameter is W  and 
either P (ifW ⩽ 2 3⁄ ) or P (ifW > 2 3⁄ ), P  and either P (ifW ⩽

0.5) or P (ifW > 0.5). 

The calculation proceeds as follows: 

IfW ⩽ 2 3⁄ :

P = P ⋅

else:
P = P ⋅

P = 1 − P
P = 1 − P

IfW ⩽ 0.5:

P = P ⋅

else:
P = P ⋅

P = 1 − P
P = 1 − P

 (eq. box 70) 

W = 1 −W
P = 1 − P

W = W ⋅ P
W = W ⋅ P
W = W

W = W −W
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THREE-COMPONENT R2 MODEL 

The three-component R2 model is restricted in the sense that the 
weight fraction of the first component must be equal to or larger then 
50% and no 2nd or 3d type component can follow or precede another 
2nd or 3d type component. This restriction results into the following 
relations: 

P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1

P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1

W = W = W
W = W = W

W = W

 (eq. box 71) 

Because of these restrictions, the number of independent variables is 
reduced to only 6. They are chosen to be W , either P (if0.5 ⩽ W ⩽

2 3⁄ ) or P (if2 3⁄ ⩽ W ⩽ 1), and the following four fractions: 

Fw =

Fw =

Fw =

Fw =

  (eq. box 72) 

The calculation of the other parameters proceeds as follows: 

W = Fw ⋅ (1 −W )
W = 1 −W −W

P =
Fw ⋅ Fw

W
⋅ [W ⋅ (P − 1) + 2] if0.5 ⩽ W ⩽ 2 3⁄

P = P ⋅ (
1

Fw
− 1) or ifFw = 0 ⇒ P = 1

W = P ⋅ W = P ⋅ W
W = P ⋅ W

W = 1 −W −W
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W +W =
1 − Fw

Fw ⋅ Fw
⋅ W or ifFw = 0orFw = 0 ⇒ W +W = 0

W = Fw ⋅ (W +W )

W = (
1

Fw
− 1) ⋅ W or ifFw = 0 ⇒ W = 1

W = 1 −W −W

W = W −W −W

 

The remaining unknown parameters can be derived using the general 
equations as in equations 38 and 39. 
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4.8.5. R3 MODELS 

PyXRD has a single (restricted) R3 probability model built-in for a 2 
component mixed layer. Because of the restrictions only 2 independent 
variables are needed for this model; W  and P (if2 3⁄ ⩽ W < 3 4⁄ ) 
or P (if3 4⁄ ⩽ W ⩽ 1). 

The restrictions for this model, that: 

–  only mixed layers with more than  2/3 of the first layer type can 
be described 

–  no two layers of the second type occur after each other 

–  the probability of finding a layer of the first type in between 
two layers of the second type is zero 

This translates into the following conditions: 

2 3⁄ ⩽ W ⩽ 1
P = P = 0
P = P = 1

 

The probabilities below are undefined but are set to zero or one to 
make the matrix valid. The actual value actually has no meaning since 
the weight fractions they should be multiplied with equal zero anyway 
(e.g. W =W ⋅ P ⋅ P  and W  is zero since P  is zero): 

P = P = P = P = P = P = 0
P = P = P = P = P = P = 1

 

The remaining probabilities and weight fractions can be calculated as 
follows and using equations 38 and 39: 

W = 1 −W

ifW < 3 4⁄ : ifW ⩾ 3 4⁄ :
P is given P is given

P = 1 − P P = 1 − P

P = P ⋅
W − 2 ⋅ W

W
P = P ⋅

W

W − 2 ⋅ W
P = 1 − P P = 1 − P

W = 3 ⋅ W − 2
W = W = W = W = 0
W = W = W = 1 −W
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5. SOFTWARE LAYOUT 

The general software layout of PyXRD is schematically presented in 
Figure 1. 

The most basic layer is inside the 'calculations' module. This module 
contains all the basic functions and data structures to allow fast 
calculations of X-ray diffraction patterns of disordered lamellar 
structures. In effect it is an implementation of the matrix algorithm as 
presented in the previous chapters. However, this layer is too basic to 
be of immediate use to a non-technical user. A GUI has been created 
to allow easier manipulation of objects. This is where the mvc 
framework comes into play. 

The mvc framework consists of three layers: a model layer containing 
all the 'logic' and wrapping the data structures present in the 
calculation layer. On top of this layer two more layers are provided: a 
controller and a view. The view is the visual representation of a (or part 
of a) model(s) while the controller provides the link between that view 
and the underlying model(s). The mvc pattern is a common paradigm 
which allows to separate so-called 'business logic' aspects from GUI 
aspects, making it easier to debug these separately. 

In the PyXRD source tree the models, views and controllers are 
grouped topic-wise, meaning that all views, controllers and models for 
a specific part (e.g. atoms, projects, phases, …) are grouped in a 
module named accordingly. Common code is provided by the mvc 
module. In future releases the mvc module might become a separate 
dependency. For now it is included with PyXRD. 

The actual calculations (as presented in the previous chapters) are 
fully separated from the model layer into the calculations module. This 
makes it easier to spread the calculations over several processes, 
making efficient use of multi-core processors. 

Aside from these layers, there are (more technical) aspects which are 
not covered in this manual like input/output, plotting, refinement 
support, etc. For details on these we refer to the source code and the 
documentation therein. 
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5.1. MODEL HIERARCHY 

5.1.1. OVERVIEW 

An overview of the model hierarchy can be found in Figure 2. The 
topmost model is the Project, which holds references to AtomTypes, 
Phases, Specimens and Mixtures. Each of these can have references to 
each other and several other objects each of which are discussed in 
more detail below. 

 

 

Figure 2: Overview of the model hierarchy in PyXRD 

Figure 1: PyXRD's most important software layers 
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5.1.2. ATOMTYPES AND ATOMS 

The most basic building block is the AtomType. This object bundles all 
the physical constants (e.g. charge, atomic weight, scattering 
factors, ...)  for a single ion (e.g. Fe2+, Fe3+, …) or for a small enough 
molecule (i.e. H2O or glycol). When a new project is created a default 
list of these AtomTypes is loaded, using the atomic scattering factors 
as published in (Waasmaier and Kirfel, 1995). 

Atom objects hold a reference to one of these AtomTypes and has 
additional information about the position of that atom in the structure 
(a z coordinate) and its multiplicity (as atoms are projected, we can 
group them together). Lists of these atom objects are used in the 
Component object to describe the layers and interlayers. They also 
support expendable interlayers in which the z coordinate of the Atom 
is recalculated keeping the relative alignment correct. 

5.1.3. PHASES, COMPONENTS, ATOMRELATIONS AND 

UNITCELLPROPERTIES 

Phase objects contain all the information needed to calculate a one-
dimensional X-ray diffraction pattern for a (mixed-layer) mineral. A 
Phase is built out of (i) a Probability object, (ii) an object describing the 
coherent scattering domain size (CSDS) and (iii) one or more 
Component objects which describe the different types of layers in the 
Phase. The Probability object describes how these layers are stacked 
using Markovian statistics and the Reichweite concept as detailed in 
chapter . The CSDS object describes what type of coherent scattering 
domain size distribution should be used and contains the necessary 
parameter values (e.g. average CSDS). Currently two types are 
implemented: a generic log-normal distribution and a log-normal 
distribution in which the average values published in Drits et al. (1997) 
are used and the average CSDS is the only variable. Each phase also has 
a σ* factor which allows to correct for incomplete preferred 
orientation (see chapter ). 

Component objects describe the size, structure, composition and 
(variation in) basal spacing for each layer type in that phase. A 
Component contains two lists of Atom objects. The first list contains  
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atoms in the silicate lattice while the other list contains the variable 
interlayer ions. This way, the silicate structure can be shared between 
different phases (e.g. AD and EG states) while keeping the interlayer 
contents separate. It also allows to automatically adjust the positions 
of the interlayer content in function of the basal spacing, as the size of 
the silicate lattice can be determined and be used as a reference plane 
for scaling the interlayer atom positions. 

Inside Components one can also define several AtomRelations: these 
describe relations between atoms. One such relation are AtomRatio's, 
for example the octahedral composition of a dioctahedral clay mineral 
can be expressed as the ratio of iron atoms over the sum of iron and 
aluminium atoms in that octahedral position. The AtomRatio object will 
then make sure that the sum of both Atoms multiplicity is always 4, and 
that their relative amounts is controlled by a certain ratio set by the 
user. Both the value of the sum and the ratio can be adjusted. Another 
example is interlayer cation contents, which are controlled by an 
AtomContents object. 

Another type of AtomRelation are UnitCellProperties. These objects 
describe the b and c axis length of the unti cell. This object is needed, 
since these properties are inter-dependent (i.e. the b-length can be 
calculated if the c-length is known and vice-versa) and dependent on 
the composition (e.g. the octahedral iron content). A  UnitCellProperty 
object allows to define these simple mathematical relations, making 
the adjustment of the unit cell size automatic. 

5.1.4. SPECIMENS, MIXTURE AND PROJECTS 

Specimen objects contain all the information regarding the 
experimental data (the actual measurements, sample size, etc.) and 
the Goniometer set up (radius, slit sizes, etc.). They also have a bunch 
of visual settings (e.g. linwidth, line color, wether to display phase 
profiles separately, …) and import/export functionality. 

Maybe slightly counter-intuitive, they do not hold a direct reference 
to phases, but are linked with them using Mixture objects. 

Mixture objects link phases and specimens together. To visualize this, 
in the user interface, a table is created with just as many rows as there 
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are Phases in the Mixture and just as many columns as there are 
Specimens in the Mixture. At the column headers there are slots where 
the user can select the Specimen and in each cell of the grid there are 
slots where the user can select the corresponding Phase. This allows to 
select different states of smectite for an AD and an EG pattern  loaded 
in a Specimen (Figure 3), while keeping unaffected Phases, like 
kaolinites and micas identical. 

Once a Mixture is created a number of parameters are available for 
automatic refinement (e.g. weight fractions from the Probability 
object, the average CSDS, etc.). In the refinement dialog, the user can 
select which parameters it would like to improve and in between which 
minimum and maximum values the ideal value should be searched for. 
A number of different refinement methods are available for this 
purpose. 

As mentioned, Project objects group together all Mixtures, Specimens, 
Phases and AtomTypes and provides a way to store and (re)load these 
Projects. 
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Figure 3: screenshot showing the 'Edit Mixtures' dialog where a user can 
link different phases (Kaolinite, Illite, ISS R0 Ca-AD, ...) with the 
corresponding specimen (S1AD.dat, S1EG.dat). 
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