
APPENDIX A: PYXRD MANUAL

A model for the simulation of 1-dimensional X-ray

diffraction patterns of disordered layered minerals

Software Manual

Last update: March 17th 2016

Mathijs Dumon

2 Appendix A

TABLE OF CONTENTS

1. Introduction ... 4

2. License ... 5

3. Installation ... 6

3.1. Windows .. 6

3.1.1. Bundled installer ... 6

3.1.2. Manual install .. 6

3.1.3. Installation of DEAP ... 7

3.2. Linux .. 8

4. Theoretical background .. 9

4.1. General mathematical formalism .. 9

4.2. Length of the reciprocal vector: s ... 10

4.3. Calculation of the structure factor matrix F .. 11

4.3.1. General ... 11

4.3.2. Structure factor Fn for a component ... 12

4.3.3. Atomic scattering factor for a single atom: fm 14

4.4. Calculation of the phase factor matrix Q... 14

4.4.1. General ... 14

4.4.2. Phase difference between the i-th and j-th components 16

4.5. Calculation of the coherent scattering domain size (CSDS) distribution

function .. 17

4.5.1. Ergun model (not implemented)... 17

4.5.2. Log-normal models .. 17

4.6. Preferred orientation ... 18

4.7. Optimization of the formalism .. 20

4.8. Probability models ... 23

4.8.1. Introduction .. 23

4.8.2. R0 models – random interlayering .. 28

4.8.3. R1 models.. 30

4.8.4. R2 models.. 36

4.8.5. R3 models.. 39

5. Software layout .. 40

5.1. Model hierarchy ... 41

 3

5.1.1. Overview ... 41

5.1.2. AtomTypes and Atoms.. 42

5.1.3. Phases, Components, AtomRelations and UnitCellProperties 42

5.1.4. Specimens, Mixture and Projects ... 43

6. References ... 45

4 Appendix A

1. INTRODUCTION

PyXRD is a computer model developed in Python for the simulation of
1-dimensional X-ray diffraction patterns for mixed-layer minerals. It
has been developed keeping a multi-specimen full profile fitting
strategy in mind. It allows for (semi-)quantification of mixed-layer
phases by combining several observed XRD patterns and can perform
automatic parameter refinements using several aglorithms.

This document provides for a general overview of the theoretical
background on which this model is based, an overview of the actual
implementation (code-wise). The online version of this manual also
contains instructions on how the general user interface (GUI) written
in GTK can be used to create and modify models.

For more detailed information we kindly refer to the source
documentation and if that is failing, the source code itself.

If any mistakes are discovered in this document please inform me at
mathijs.dumon@ugent.be

 5

2. LICENSE

###

#######

 PyXRD

 A python implementation of the matrix algorithm developed for the X-ray

 diffraction analysis of disordered lamellar structures

 Copyright (c) 2013-2014, Mathijs Dumon

 This software is licensed under a BSD-2 Clause ("FreeBSD") License,

 except for the mvc module, which is a derived work from the pygtkmvc library

 and is accordingly licensed under a GNU LGPL 2 license.

 You should have received a copy of the GNU Library General Public

 License along with this library; if not, write to the Free Software

 Foundation, Inc., 51 Franklin Street, Fifth Floor,

 Boston, MA 02110-1301 USA

###

#######

All rights reserved - BSD-2-Clause ("FreeBSD") License.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice,

 this list of conditions and the following disclaimer in the documentation

 and/or other materials provided with the distribution.

6 Appendix A

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 7

3. INSTALLATION

3.1. WINDOWS

As of PyXRD v0.6.2 there are two options for windows users: (i) either
manually install all the dependencies and PyXRD or (ii) use a custom
installer which will install PyXRD and all of its dependencies for you.

Note that when using the bundled installer, DEAP is not installed. You
will still need to follow the instructions in section 3.1.3

3.1.1. BUNDLED INSTALLER

Download and run the bundled installer:

https://github.com/mathijs-
dumon/PyXRD/releases/download/v0.6.9/PyXRD-0.6.9-win32-
bundle.exe

For most of the dependencies this does not require input from your
side. However, for the Numpy and Scipy libraries there is currently no
easy way to completely automate the installation. As a result, you will
have to click 'Next' and/or 'Finish' a few times to complete the
installation for these libraries.

Note that this is still an experimental feature. If you encounter
problems, please report them by e-mail (mathijs.dumon@ugent.be)
and continue by following the instructions for manual installation
below.

3.1.2. MANUAL INSTALL

The installation is a bit lengthy because PyXRD depends on a number
of third-party python modules. Work has started to create a unified
installer, but for now you'll have to install them manually. These are
the dependencies (more recent versions should also work, except for
python which needs to be version 2.7):

• Python: http://www.python.org/ftp/python/2.7.8/python-
2.7.8.msi

8 Appendix A

• PyGTK:
http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/2.24
/pygtk-all-in-one-2.24.2.win32-py2.7.msi

• Numpy:
http://sourceforge.net/projects/numpy/files/NumPy/1.7.0/nu
mpy-1.7.0-win32-superpack-python2.7.exe/download

• Scipy:http://sourceforge.net/projects/scipy/files/scipy/0.14.0/
scipy-0.14.0-win32-superpack-python2.7.exe/download

• Matplotlib:
https://downloads.sourceforge.net/project/matplotlib/matplo
tlib/matplotlib-1.2.1/matplotlib-1.2.1.win32-py2.7.exe

• Pyparsing:
http://sourceforge.net/projects/pyparsing/files/pyparsing/pyp
arsing-2.0.3/pyparsing-2.0.3.win32-py2.7.exe/download

• Setuptools: https://bootstrap.pypa.io/ez_setup.py

1. Download the script somewhere you can find it (e.g. the
desktop)

2. Open a command line as administrator
(Start button → Search → enter 'cmd.exe' → right-click
the command line icon and select 'Run as
adiministrator')

3. Enter the following command (replace the path to
ez_setup to where you have downloaded it):
C:\Python27\python.exe

c:\users\myusername\Desktop\ez_setup.py
This assumes you have installed python in C:\Python27
(the default location), if not change the command
accordingly.

Finally download and install PyXRD:
https://github.com/mathijs-
dumon/PyXRD/releases/download/v0.6.9/PyXRD-0.6.9.win32.exe

3.1.3. INSTALLATION OF DEAP

You can optionally install DEAP which will provide evolutionary
refinement algorithms:

 9

1. Open a command line as administrator
(Start button → Search → enter 'cmd.exe' → right-click the
command line icon and select 'Run as adiministrator')

2. Enter the following command:
C:\Python27\Scripts\easy_install.exe deap

10 Appendix A

3.2. LINUX

Installation on linux should be straightforward, first install Python 2.7
and PyGTK:

• Debian/Ubuntu/...
sudo apt-get install python python-gtk2

• Fedora/Red Hat/... (untested)
sudo yum install python python-gtk

• OpenSuSE (untested)
sudo yum install python python-gtk

Then you can choose to either install the dependencies from your
package manager repositories or using pip or easy_install. Usually it is
preferable to use the binaries from the package manager as you will
not need to install them by hand. The dependencies are:

• Numpy >= 1.7.0

• Scipy >= 0.14.0

• Matplotlib >= 1.2.1

• Pyparsing >= 2.0.4

• Setuptools

And the corresponding commands would be:

• Debian/Ubuntu/...
sudo apt-get install python-numpy python-scipy python-matplotlib

• Fedora/Red Hat/... (untested)
sudo yum install python python-gtk python-numpy python-scipy python-

matplotlib

• OpenSuSE (untested)
sudo yum install python python-gtk python-numpy python-scipy python-

matplotlib

Once this has been completed, open a terminal and enter these
commands:

 11

 sudo easy_install pip

 pip install --user 'pyxrd>=0.6.9'

This will install everything under your '~/.local' folder. To run PyXRD
type in the following:

 ~/.local/bin/PyXRD

or make a shortcut to this command.

4. THEORETICAL BACKGROUND

4.1. GENERAL MATHEMATICAL FORMALISM

The mathematical formalisms on which PyXRD is based is described in
a number of articles and books published over the years. Relevant
references can be found at the end of this section. Below an overview
will be given of the different parts of the general matrix formalism.

The general matrix formalism (described in detail in Drits & Tchoubar
(1990)) allows to calculate the diffraction pattern for a single mixed-
layer phase A as:

I (s) ∝
⋅

⋅ Ξ ⋅ ∑ α(n)∫ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [R]} ⋅ T (U) ⋅ p(ϕ) ⋅ dϕ (eq.

box 1)

in which:

I (s) the intensity diffracted by phase A at reciprocal
space value s

wf the weigth fraction of phase A in the mixture
ρ is the density for an average unit cell in mixed

layer phase A composed of G different

components,calculated as ∑
⋅

,in which

M is the total atomic mass for a unit cell of
component g, V is the volume of the unit cell for
component g and W is the relative fraction of
components of type g in the mixed-layer phase A

V is the average unit cell for phase A, calculated as
∑ W ⋅ V

Ξ is the Lorentz-polarisation factor, including a
correction for the imperfect orientation of

12 Appendix A

particles (also known as the powder ring
distribution factor), (see chapter 20)

α(n) is the fraction of crystallites with a coherent
scattering domain size (CSDS) of n layers (see
chapter 19)

[F] the structure factor matrix (see chapter 13);
[W] the weight fraction matrix (see chapter 25);
[R] is defined as [R] = [I] + 2 ⋅ ∑ ⋅ [Q] in

which [I] is the identity matrix, M the number of
layers in the considered CSDS and [Q] is the
nearest neighbour phase difference matrix (see
chapter 16)

T (U) is the mean area of the coherent scatter domain
with n layers, which can be approximated by n ⋅
c = n ⋅ ∑ c ⋅ W in which c is the average d-
spacing and c is the d-spacing of g-th
component

p(ϕ) is the (normalized) probability of finding a layer
deviating ϕ radians from perfect orientation

In the following sections, the calculation of each of the matrices and

functions is explained in more detail.

4.2. LENGTH OF THE RECIPROCAL VECTOR: S

The length of the reciprocal vector (commonly denoted as s⃗) can be
expressed as:

|s⃗| = s =
⋅

 (eq. box 2)

in which:

θ the angle of the incident X-ray bundle
λ the wavelength of the X-ray waves

It relates with Bragg's formula like this:

2 ⋅ d ⋅ sin(θ) = n ⋅ λ
⋅ ()

= = s
 (eq. box 3)

 13

4.3. CALCULATION OF THE STRUCTURE FACTOR MATRIX F

4.3.1. GENERAL

The actual size of the F and Q matrices depends on the Reichweite of
the model. Therefore this section is split in two parts: first the setup of
the structure factor matrix for R0 and R1 models is explained, and then
it is explained how that matrix can be scaled to match the higher
Reichweite models. The basis for this elaboration is based for the larger
part on principles and examples found in Drits & Tchoubar (1990).

LAYOUT FOR R0 AND R1 MODELS

The structure factor matrix F then has the following definition:

F = [

F F* F F* . . . F F*

F F* F F* . . . F F*

.
F F* F F* . . . F F*

] (eq. box 4)

in which:

F the structure factor for the g-th component (see
14)

F* its complex conjugate

The complete structure factor matrix F can be constructed from
simpler matrices. First we create a 1D matrix Fa containing the
structure factors for each component:

F = [F F . . . F] (eq. box 5)

After this we create another 1D matrix Fb which is the transpose-
conjugated form of matrix Fa:

F = F* = [

F*

F*

. . .
F*

]

 (eq. box 6)

The structure factor matrix F can then be constructed by multiplying
matrices Fb with Fa:

14 Appendix A

F = F ⋅ F = F* ⋅ F

F = [

F*

F*

. . .
F*

] ⋅ [F F . . . F]

F = [

F F* F F* . . . F F*

F F* F F* . . . F F*

.
F F* F F* . . . F F*

]

 (eq. box 7)

SCALING FOR HIGHER REICHWEITE MODELS

For models with R > 1 the matrix needs to be of size GR. To accomplish
this, each pair of structure factors is replaced with a sub-matrix of size
GR-1 of the form:

F = [

F F* F F* . . . F F*

F F* F F* . . . F F*

.
F F* F F* . . . F F*

] (eq. box 8)

With other words, each pair of structure factors is replaced with a
'sub-matrix' of size GR-1 in which each element is a duplicate of the
replaced pair of structure factors.

4.3.2. STRUCTURE FACTOR FN FOR A COMPONENT

The structure factor characterizing the X-ray scattering by an infinite,
three-dimensional atomic motif can, in general, be written as:

F (s) = ∑ f (s) ⋅ exp(2 ⋅ π ⋅ i ⋅ (
⋅

+
⋅

+
⋅
)) (eq. box 9)

in which:

m the number of atoms in the motif of the
component

fm(s) the scattering factor for the m-th atom
xm, ym, zm the position of the m-th atom along the X, Y and

Z axes of the motif (in nm)
h, k, l the miller indices of the reflection being

calculated
a, b, c unit cell dimensions along the X, Y and Z axes of

the motif (in nm)

 15

s the length of the reciprocal vector (see chapter
12)

i the unreal number (= (−1))
However, since we are only interested in 00l-reflections, the h and k

terms can be dropped and the structure factor for this 1-dimensional
atomic motif can be written as:

F = ∑ f (s) ⋅ exp(2 ⋅ π ⋅ i ⋅
⋅
) (eq. box 10)

According to Bragg's law, we can write (also see section 12):

⋅ ()
= = s (eq. box 11)

Combining the above two relations and setting n=1 and l=1, we can
write:

F = ∑ f (s) ⋅ exp(2 ⋅ π ⋅ i ⋅ z ⋅ s) (eq. box 12)

in which:

m the number of atoms in the motif of the
component

fm(s) the scattering factor for the m-th atom (see
chapter 16)

zm the position of the m-th atom along the Z axis of
the motif

s the length of the reciprocal vector (see chapter
12)

i the unreal number (= (−1))

The complex conjugate of the structure factor is (see chapter 13):

F* = ∑ f (s) ⋅ exp(−2 ⋅ π ⋅ i ⋅ z ⋅ s) (eq. box 13)

This exponential relation can be transformed using Euler's formula
into the sine and cosine form:

F = ∑ f (s) ⋅ [cos(2 ⋅ π ⋅ i ⋅ z ⋅ s) + i ⋅ sin(2 ⋅ π ⋅ i ⋅ z ⋅ s)] (eq. box 14)

The complex conjugate of this formula can then be written as:

F* = ∑ f (s) ⋅ [cos(2 ⋅ π ⋅ i ⋅ z ⋅ s) − i ⋅ sin(2 ⋅ π ⋅ i ⋅ z ⋅ s)] (eq. box 15)

16 Appendix A

4.3.3. ATOMIC SCATTERING FACTOR FOR A SINGLE ATOM: FM

The atomic scattering factor for a single atom is calculated using the
Cromer-Mann coëfficiënts as published in Waasmaier and Kirfel (1995).
The Debye constants are set to:

0 for neutral atoms
2 for anions
1.5 for cations

The atomic scattering factor is calculated as follows:

f (s) = P ⋅ [c + ∑ (a ⋅ exp(−b ⋅
⋅
))] ∗ exp(−B ∗ s) (eq. box 16)

in which:

Pm the number of atoms per unit cell at this z
location (can be > 1 due to the projection on the
Z-axis)

c constant of the exponential approximation of
the scattering factor

ai the i-th a factor of the exponential
approximation of the scattering factor

bi the i-th b factor of the exponential
approximation of the scattering factor

s the length of the reciprocal vector (see chapter
12)

Bm the Debye constant for the m-th atom
The factor 10 in the exponential part of the summation is there to
convert the units of the reciprocal vector s from nanometer to
Ångstrom (factor 10).

4.4. CALCULATION OF THE PHASE FACTOR MATRIX Q

4.4.1. GENERAL

As explained in section 13, the actual size of the F and Q matrices
depends on the Reichweite of the model. This section is also split in
two parts: first the setup of the phase factor matrix for R0 and R1
models is explained, and then it is explained how that matrix can be
scaled to match the higher Reichweite models.

 17

LAYOUT FOR R0 AND R1 MODELS

The phase factor matrix Q is the Hadamard product (element-wise
product, not the regular matrix multiplication) of two other matrixes:

Q = [ϕ] ∘ P (eq. box 17)

of which the first term can be defined as follows:

[ϕ] = [

ϕ ϕ . . . ϕ
ϕ ϕ . . . ϕ
.
ϕ ϕ . . . ϕ

] (eq. box 18)

in which:

φij the phase difference between the i-th and j-th
component in the mixed-layer phase

The matrix P contains the probability parameters. Its calculation is
detailed in chapter 25 for different values of R and will not be discussed
in further detail here.

SCALING FOR HIGHER REICHWEITE MODELS

For models with R > 1 the [ϕ] matrix needs to be of size GR. To
accomplish this, each phase difference [ϕ] is replaced with a sub-
matrix of size GR-1 of the form:

[ϕ] = [

ϕ ϕ . . . ϕ

ϕ ϕ . . . ϕ
.
ϕ ϕ . . . ϕ

] (eq. box 19)

With other words, each phase difference is replaced with a sub-matrix
of size GR-1 in which each element is a duplicate of the replaced phase
difference.

18 Appendix A

4.4.2. PHASE DIFFERENCE BETWEEN THE I-TH AND J-TH

COMPONENTS Φ

The phase difference depends on the distance between the
components. If we define the i-th component as the one preceeding
the j-th component, the phase difference depends on the basal spacing
of that i-th component (and not of the j-th component):

φ = e ⋅ ⋅ ⋅ ⋅ ⋅ e ⋅(⋅ ⋅) = e ⋅ ⋅ ⋅(⋅ ⋅ ⋅) (eq. box 20)
in which:

s the length of the reciprocal vector (see chapter
12)

i the unreal number (= (−1))
d the basal spacing of the i-th component (nm)
δ the variation in the basal spacing of the i-th

component (nm)

In Plançon (2002) an equation can be found on how to insert variable
d-spacings. A similar formulation can also be found in Drits & Tchoubar
(1990, page 89), albeit with different constants. The latter has been
implemented in PyXRD, as it matched with the output from Sybilla. It
assumes a Gaussian distribution of the d-spacing around the default d
spacing.

F' = ∑ f (s) ⋅ e ⋅ ⋅ ⋅ ⋅ ⋅ e ⋅ ⋅ ⋅ (eq. box 21)

in which:

m the number of atoms in the motif of the
component

fm(s) the scattering factor for the m-th atom (see
chapter 16)

zm the position of the m-th atom along the Z axis of
the motif

s the length of the reciprocal vector (see chapter
12)

δ the variable d-spacing standard deviation
(assuming a Gaussian distribution)

i the unreal number (= (−1))

 19

4.5. CALCULATION OF THE COHERENT SCATTERING DOMAIN SIZE

(CSDS) DISTRIBUTION FUNCTION Α

Several functions have been proposed in the past. Their definitions are
detailed below. Currently in the model only a generic log-normal
distribution and the log-normal distribution as proposed in Drits et al.
(1997) are implemented.

In general, the arithmetic mean CSDS can be calculated from whatever
CSDS distribution function is used by:

N = ∑ n ⋅ α(n) (eq. box 22)

4.5.1. ERGUN MODEL (NOT IMPLEMENTED)

One of the first CSDS distributions proposed is that of Ergun (1970):

α(n) = exp() (eq. box 23)

in which:

n the CSDS value of interest
δ the mean defect-free number of layers

However, this simple model is not used often anymore and has been

replaced by a log-normal CSDS distribution, as detailed in Drits et al.
(1997).

4.5.2. LOG-NORMAL MODELS

The log-normal models assume a log-normal distribution of CSDS values.

The basic definition is:

α(n) =
⋅

⋅
⋅ exp(

(()–())

⋅
) (eq. box 24)

in which:

n the CSDS value of interest
A the mean of the probability density function,

defined as: A = a ⋅ log(N) + a
 in which a1 and a2 are empirical constants and N

is the average CSDS.

20 Appendix A

B² the variance of the probability density function,
defined as:

 B = b ⋅ log(N) + b
 in which b1 and b2 are empirical constants and

N is the average CSDS.
This model is implemented in PyXRD, together with a model which has

pre-set values for the a , a , b and b parameters (according to Drits
et al. (1997)):

a = 0.9485
a = 0.0170
b = 0.1032
b = 0.0034

4.6. PREFERRED ORIENTATION

A correction for preferred orientation of phases should be applied. The
basis for these corrections was laid by Reynolds (1986) and the
importance of these corrections has recently been reiterated upon by
Dohrmann et al. (2009). The effect of preferred orientation (calculated
as ψ) is usually grouped with the Lorentz-Polarisation factor into Ξ:

S =

Q =
√ ⋅ ()⋅ *

ψ = erf
()⋅√ ⋅

⋅ *⋅
− 2 ⋅ sin(θ) ⋅ ()

Ξ =
()

()
⋅ ψ

 (eq. box 25)

We also need to describe the distribution of the orientation of the
particles in our sample. If our sample is well-oriented, we can assume
a Gaussian distribution with a standard deviation σ* (Dohrmann et al.,
2009) so that the distribution fuction p(ϕ) becomes:

p(ϕ) =
*⋅√ ⋅

⋅ e ⋅(*) (eq. box 26)

In the general equation, this function needs to be integrated over the
entire domain of ϕ leading to:

∫ p(ϕ)dϕ = ⋅ [1 + erf(
*⋅√

) − erf(
*⋅√

)] (eq. box 27)

 21

Since for an oriented sample ϕ = 0 and ϕ ≫ σ*, we can
approximate this:

∫ p(ϕ)dϕ ≃ ⋅ [1 + 1 − 0] = 1 (eq. box 28)

As a result, for an oriented sample, equation 1 becomes:

I (s) ∝
⋅

⋅ Ξ ⋅ ∑ α(n) ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [R]} ⋅ T (U) (eq. box 29)

22 Appendix A

4.7. OPTIMIZATION OF THE FORMALISM

The equation 29 can be further optimized to allow for a more efficient
calculation process.

If we drop in the relations given for T (U) and [R] detailed in chapter
11, we arrive at:

I (s) ∝
wf

ρ ⋅ V
⋅ Ξ

⋅ α(n) ⋅ n ⋅ c ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [[I] + 2 ⋅
n −m

n
⋅ [Q]]}

 (eq. box 30)

Since α(n) and n are real numbers we can bring them inside the ℜ𝑇𝑟
operators, and since c is independent of n we can take it out of the
outermost summation, leading to:

I (s) ∝
c ⋅ wf

ρ ⋅ V
⋅ Ξ

⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ α(n) ⋅ n ⋅ c ⋅ [[I] + 2 ⋅
n −m

n
⋅ [Q]]}

 (eq. box 31)

In addition, since [F] and [W] are independent of n, we can take them
out of the outer summation (together with the ℜ𝑇𝑟 operators), and
re-write this as:

I (s) ∝
c ⋅ wf

ρ ⋅ V
⋅ Ξ ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ α(n) ⋅ n ⋅ [[I] + 2

⋅
n −m

n
⋅ [Q]]}

 (eq. box 32)

At this point we have already reduced calculating [F] ⋅ [W] M times to
calculating it only once. But we can still improve this a little bit.

 23

We can distribute the α(n) ⋅ n term over the sum of the identity matrix
and the inner summation, which cancels the division by n in there. If
we also split this summation of a sum in the sum of two summations,
we arrive at:

I (s) ∝
⋅

⋅
⋅ Ξ ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [∑ α(n) ⋅ n ⋅ [I] + 2 ⋅

∑ ∑ α(n) ⋅ (n −m) ⋅ [Q]]} (eq. box 33)

Since the arithmetic mean for the CSDS is defined as M = ∑ α(n) ⋅ n
and [I] is independent of n, we can change this to:

I (s) ∝
⋅

⋅
⋅ Ξ ⋅ ℜ𝑇𝑟{[F] ⋅ [W] ⋅ [M ⋅ [I] +

2 ⋅ ∑ ∑ α(n) ⋅ (n −m) ⋅ [Q]
⏟

[]

]}

 (eq. box 34)

The double summation term, indicated in equation 34 as [S], can now
be considered separately. When we write this summation in full, we
arrive at a sum of M – 1 summations, of which the first summation will
have one term, and the last will have M-1 terms, or:

[S] = ∑ ∑ α(n) ⋅ (n − m) ⋅ [Q] =

α(2) ⋅ [(2 − 1) ⋅ [Q]]

+α(3) ⋅ [(3 − 1) ⋅ [Q] + (3 − 2) ⋅ [Q]]
+⋯

+α(M) ⋅ [(M − 1) ⋅ [Q] + (M− 2) ⋅ [Q] +⋯+ (M− (M− 1)) ⋅ [Q]]
⏟

()terms

 (eq.

box 35)

Since these terms have a lot of Q matrices in common, summing them
in this way is rather time consuming (especially when Q has a high
rank). This can be solved by re-grouping these common [Q] terms as
follows:

24 Appendix A

[S] = ∑ ∑ α(n) ⋅ (n −m) ⋅ [Q] =

[α(2) ⋅ (2 − 1) + α(3) ⋅ (3 − 1) + ⋯+ α(M) ⋅ (M − 1)]
⏟

()terms

⋅ [Q]

+[α(3) ⋅ (3 − 2) + α(4) ⋅ (4 − 2) +⋯+ α(M) ⋅ (M − 2)]
⏟

()terms

⋅ [Q]

+⋯
+[α(M) ⋅ (M − (M − 1))]

⏟
⋅ [Q]

 (eq.

box 36)

Which can be written as a summation again like this:

[S] = ∑ ∑ α(n) ⋅ (n −m) ⋅ [Q] = ∑ [Q] ⋅ ∑ α(m) ⋅
(m − n) (eq. box 37)

Now each [Q] matrix is multiplied only once with a single factor for
each value of n, which is a huge performance gain compared to
multiplying each [Q] matrix (M-1) times.

 25

4.8. PROBABILITY MODELS

4.8.1. INTRODUCTION

The probability models are responsible for calculating the W and P
matrices (see previous sections) containing the relative weight
fractions and probability parameters respectively. The probability
parameters are derived using Markovian statistics. The rank of the
matrices depends on the number of components G in the mixed-layer
and the Reichweite R.

The Reichweite or Reach is an important concept. The value for R
denotes what number of previous components (in a stack of
components) still influence the probability determining the type of the
following component. With other words, for:

R=0; the type of the next component does not depend
on the previous components,

R=1; the type of the next component depends on the
type of the previous component,

R=2; the type of the next component depends on the
types of the previous two components,

etc.
There are a number of general relations between the weight fractions

W and probabilities P detailed below. They are valid regardless of the
value of R or G. These are detailed below. For a more in-depth
explanation we refer to Drits & Tchoubar (1990). For stacks composed
of G types of layers, we can write:

W = N N⁄ where i ∈ {1, 2,… , G}

W = N (N − 1)⁄ where i, j ∈ {1, 2,… , G}
W = N (N − 2)⁄ where i, j, k ∈ {1, 2,… , G}

⋮
etc. … …

 (eq. box 38)

 with:
W = W ⋅ P W = W ⋅ P …

∑ W = 1 ∑ ∑ W = 1 …

∑ P = 1 ∑ P = 1 …

 (eq. box 39)

26 Appendix A

In the following sections a description is made how to setup the
matrices used in the calculations for different combinations of R and
G. An important step in this process is the selection of independent
parameters. A modeller is free to choose these, however for PyXRD it
was chosen to make the definition of the independent parameters as
much as possible identical to those used in the Sybilla® model created
by Chevron ETC, to facilitate (future) exchange of models and
comparison of results.

W AND P MATRIX LAYOUTS

The general expressions for the W and P matrix for different
combinations of R and G can be generalized. To illustrate this, the
matrices for an R0 or R1 model and for an R2 with G components model
are shown below.

The expressions for the W and P matrix for R0 and R1 models are:

W = [

W 0 … 0
0 W … 0

⋮ ⋮ ⋮
0 0 … W

] (eq. box 40)

P = [

P P … P
P P … P

⋮ ⋮ ⋮
P P … PGG

] (eq. box 41)

Observe that these matrices are of size GxG.

 27

For an R2 model, the basic layout is preserved, however each of the
elements in the W and P matrices (e.g. W1 or P11) are replaced by sub-
matrices of size GxG:

W = [

W 0 … 0
0 W … 0

⋮ ⋮ ⋮
0 0 … W

]

P = [

0 0 … 0
0 0 0
⋮ ⋮ ⋮
P P … P ← j-th row of the matrix
⋮ ⋮ ⋮
0 0 … 0

]

 (eq. box 42)

This increases the size of the complete W or P matrix to G²xG².

In general, for a model with a Reichweite R and G components, the
final W and P matrix will have a size of GRxGR. They can be created
using the general layout of equations 42 and by replacing the elements
recursively G-1 times by sub-matrices of the following generalised
form:

W… = [

W…1 0 … 0
0 W…2 … 0

⋮ ⋮ ⋮
0 0 … W…G

]

P… = [

0 0 … 0
0 0 0
⋮ ⋮ ⋮
P…1 P…2 … P…G ← j-th row of the matrix
⋮ ⋮ ⋮
0 0 … 0

]

 (eq. box 43)

The “…” indices are to be replaced with the indices of the parameters
the sub-matrix is replacing in the parent matrix. E.g. when replacing
the initial Wi elements for an R3 model, the “...” index would be
replaced with the value of the “i” index of the replaced Wi parameter.
The result will be a matrix containing Wij parameters. Since we are
creating a matrix for an R3 model, there need to be in total 2 rounds
of replacements. This means we need to replace every Wij parameter
with another sub-matrix in which the “...” index is this time replaced
with the value ij index values of the replaced Wij parameter. We have
then made G-1 recursive replacements and the matrix will have a size
of G3xG3 and contain parameters of the form Wijk.

28 Appendix A

PARAMETER AND MATRIX INDEXATION

Simple relationships can be derived to obtain the matrix column and
row indexes from the parameter indexes and vice-versa.

W parameter indexes to column and row indexes:

x = y = ∑ z ⋅ G (eq. box 44)

in which:

 x the W matrix column index

 y the W matrix row index

 Z the number of indexes in the W parameter (e.g. 2 for W11)

 zi the value of the i-th W parameter index (e.g. z1 = 2 for W21)

 G the number of components

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1)

The opposite relation for W parameters is:

z = (⌊ ⌋modG) + 1 (eq. box 45)

in which:

 zi the value of the i-th W parameter index (e.g. z1 = 2 for W21)

 G the number of components

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1)

 x the W matrix column index (can be replaced with the row
index since x=y)

P parameter indexes to column and row indexes:

x = ∑ z ⋅ G

y = ∑ z ⋅ G
 (eq. box 46)

in which:

 Z the number of indexes in the P parameter (e.g. 3 for P123)

 29

 zi the value of the i-th W parameter index (e.g. z1 = 3 for P321)

 G the number of components

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1)

 x the P matrix column index

 y the P matrix row index

The opposite relation for P parameters is:

for i ∈ {1,2,… ,G}

z = (⌊ ⌋modG) + 1

for i = G:
z = (⌊ ⌋modG) + 1

 (eq. box 47)

in which:

 zi the value of the i-th W parameter index (e.g. z1 = 2 for W21)

 G the number of components

 R' R, but with a lower limit of 1, as in: R′: ((R > 1) → R) ∧ ((R ⩽

1) → 1)

 x the W matrix column index (can be replaced with the row
index since x=y)

30 Appendix A

4.8.2. R0 MODELS – RANDOM INTERLAYERING

In this model the chance of finding any type of layer after another type
of layer equals the relative weight of that layer in the whole stack. This
type of disorder is actually a specific type of R1 ordering where for a
stack containing G different types of layers we can write:

P = W andW =W ∗ P = W ∗W

P = W andW =W ∗ P = W ∗W

P = W andW =W ∗ P = W ∗W
. . .

PgG = W andWgG = W ∗ PgG = W ∗W

withg ∈ {1,2,… , G}

 (eq. box 48)

In addition to the above relations, the sum of all the relative weights
should equal one (see equation box 39):

W = 1

Therefore, since we have G weight fraction parameters and we have
G+1 relations, we only need to choose G-1 independent parameters to
be able to calculate all weight fractions and related probabilities. These
G-1 parameters are chosen as such so that they can all be described by
the following weight fraction definition:

Fw =
∑

withg ∈ {1,2,… , G − 1} (eq. box 49)

Using the above definition we can derive that:

W = Fw ∗ ∑ W for every g ∈ {1, 2,… , G} (eq. box 50)

and using equation 39, we can also derive that:

∑ W
⏟

= 1

= ∑ W +∑ W

∑ W = 1 − ∑ W for every g ∈ {1, 2,… , G}

 (eq. box 51)

If we are considering the first ratio Fw1, then in equation 50 g = 1 and,
using equation 39, can be written as:

W = Fw ⋅ ∑ W
⏟

= 1
W = Fw

 (eq. box 52)

 31

Or, with other words, the first fraction equals the weight fraction for
the first component. Knowing this, the other weight fractions can be
derived in sequence by combining the relations in boxes 50 and 51. E.g.
for g = 2 we can write:

W = Fw ⋅ ∑ W (eq. box 53)

and since:

∑ W = 1 − ∑ W = 1 −W (eq. box 54)

the first expression becomes:

W = Fw ⋅ (1 −W) (eq. box 55)

As can be derived from the above equations, these R0 expression can
be extended for any number of components. In fact, the
implementation in PyXRD comprises a generalised probability model
that can handle any number of layers. In practice however, there is
little need for a 100 component mixed layer model, so the upper limit
has been set to 6 different components (for now).

32 Appendix A

4.8.3. R1 MODELS

PyXRD has R1 models available for mixed-layers with up to 4 different
components.

TWO-COMPONENT R1 MODEL

For two-component (G=2) R1 models, the independent parameters are
W and P (ifW ⩽ 0.5) or P (ifW > 0.5). The other parameters in this
model can then be calculated using these two parameters:

W = 1−W
ifW ⩽ 0.5:
P = 1 − P

P = W ⋅

P = 1 − P
ifW > 0.5:
P = 1 − P

P = W ⋅

P = 1 − P

 (eq. box 56)

 33

THREE-COMPONENT R1 MODEL

For three-component (G=3) R1 models, the first two independent
parameters are identical to the two-component model: W and either
P (ifW ⩽ 0.5) or P (ifW > 0.5), the latter is defined as:

P = (eq. box 57)

The other four parameters are chosen to be the following fractions:

Fw =

Fw =

Fw =

Fw =

 (eq. box 58)

The primary weight fractions W2 and W3 can be calculated as follows:

W = (1 −W) ⋅ Fw
W = 1 −W −W

 (eq. box 59)

If W ⩽ 0.5:

Since:
W =W +W +W ⇒ P =

W = W +W +W ⇒ P =

W = W +W +W ⇒ P =

We can write:
(P + P) ⋅ W = W +W − (W +W +W +W) = W +W −W

W = W +W −W ⋅ (P + P)

SinceP + P + P = 1we can change this to:
W = W +W −W ⋅ (1 − P)

 (eq. box 60)

If W > 0.5:

W = (1.0 −W) ⋅ P (eq. box 61)

From that point on the calculation is fairly straightforward:

34 Appendix A

W =W ⋅ Fw ⋅ Fw
W = W ⋅ Fw ⋅ (1 − Fw)

P = ifW > 0else0

P = 1 − P − P

W = W ⋅ (1 − Fw) ⋅ Fw
W = W ⋅ (1 − Fw) ⋅ (1 − Fw)

P = ifW > 0else0

P = ifW > 0else0

P = 1 − P − P

P = ifW > 0else0

P = ifW > 0else0

P = 1 − P − P ifW > 0.5elseP is given

 (eq. box 62)

At this point we know all probability parameters P . Together with the
primary weight fractions W1, W2 and W3, it possible to calculate any
unknown W using the equations from box 39.

 35

FOUR-COMPONENT R1 MODEL

As with previous R1 models, the first two independent parameters are
W and either P (ifW ⩽ 0.5) or P (ifW > 0.5). The other 10
parameters are chosen to be the following fractions:

Fw = Fw =

Fw =
∑ ∑

Fw =
∑ ∑

Fw = Fw =

Fw = Fw =

Fw = Fw =

 (eq. box 63)

Again, the primary weight fractions can be easily calculated from these
fractions:

W = (1 −W) ⋅ Fw
W = (1 −W −W) ⋅ Fw
W = 1 −W −W −W

 (eq. box 64)

Then, if W1 ≤ 0.5, we can calculate Wxx using the following formula,
derived in the same way as for the 3 component R1 model:

W = W ⋅ (P − 1) +W +W +W (eq. box 65)

If W1 > 0.5 , Wxx is calculated as:

W = P ⋅ (W +W +W) (eq. box 66)

From that point on the calculation is again fairly straightforward, first
we calculate a number of partial sums:

W = W +W +W = W ⋅ Fw
W = W +W +W +W +W +W = (W −W)

W = W +W +W = W ⋅ Fw

W = W +W +W = W −W

 (eq. box 67)

36 Appendix A

Then we can calculate some of the weight fractions and all of the
probabilities as follows:

W = Fw ⋅ W
W = Fw ⋅ (W −W)
W = W −W −W

W = Fw ⋅ W
W = Fw ⋅ (W −W)
W = W −W −W

W = Fw ⋅ W
W = Fw ⋅ (W −W)
W = W −W −W

 (eq. box 68)

P = W W⁄ or ifW = 0:P = 0

P = W W⁄ or ifW = 0:P = 0

P = 1 − P − P − P

P = W W⁄ or ifW = 0:P = 0

P = W W⁄ or ifW = 0:P = 0

P = W W⁄ or ifW = 0:P = 0

P = 1 − P − P − P

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = 1 − P − P − P

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = or ifW = 0:P = 0

P = 1 − P − P − P ifW > 0.5elseP isgiven

 (eq. box 69)

At this point we know all probability parameters P . Together with the
primary weight fractions W1, W2, W3 and W4, it possible to calculate any
unknown W using the equations from box 39.

 37

4.8.4. R2 MODELS

PyXRD has R2 models available for models with up to 3 different
components.

TWO-COMPONENT R2 MODEL

This is one of the few exceptions where the choice of independent
parameters differs from Sybilla. The reason is that Sybilla implements
a restricted version, not allowing for the full range of possibilities.
PyXRD does not have these constraints. The result is that PyXRD
requires two more parameters (4 in tolal) compared with Sybilla.

As with previous models, the first independent parameter is W and
either P (ifW ⩽ 2 3⁄) or P (ifW > 2 3⁄), P and either P (ifW ⩽

0.5) or P (ifW > 0.5).

The calculation proceeds as follows:

IfW ⩽ 2 3⁄ :

P = P ⋅

else:
P = P ⋅

P = 1 − P
P = 1 − P

IfW ⩽ 0.5:

P = P ⋅

else:
P = P ⋅

P = 1 − P
P = 1 − P

 (eq. box 70)

W = 1 −W
P = 1 − P

W = W ⋅ P
W = W ⋅ P
W = W

W = W −W

38 Appendix A

THREE-COMPONENT R2 MODEL

The three-component R2 model is restricted in the sense that the
weight fraction of the first component must be equal to or larger then
50% and no 2nd or 3d type component can follow or precede another
2nd or 3d type component. This restriction results into the following
relations:

P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1

P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1
P = P = 0 ⇒ P = 1

W = W = W
W = W = W

W = W

 (eq. box 71)

Because of these restrictions, the number of independent variables is
reduced to only 6. They are chosen to be W , either P (if0.5 ⩽ W ⩽

2 3⁄) or P (if2 3⁄ ⩽ W ⩽ 1), and the following four fractions:

Fw =

Fw =

Fw =

Fw =

 (eq. box 72)

The calculation of the other parameters proceeds as follows:

W = Fw ⋅ (1 −W)
W = 1 −W −W

P =
Fw ⋅ Fw

W
⋅ [W ⋅ (P − 1) + 2] if0.5 ⩽ W ⩽ 2 3⁄

P = P ⋅ (
1

Fw
− 1) or ifFw = 0 ⇒ P = 1

W = P ⋅ W = P ⋅ W
W = P ⋅ W

W = 1 −W −W

 39

W +W =
1 − Fw

Fw ⋅ Fw
⋅ W or ifFw = 0orFw = 0 ⇒ W +W = 0

W = Fw ⋅ (W +W)

W = (
1

Fw
− 1) ⋅ W or ifFw = 0 ⇒ W = 1

W = 1 −W −W

W = W −W −W

The remaining unknown parameters can be derived using the general
equations as in equations 38 and 39.

40 Appendix A

4.8.5. R3 MODELS

PyXRD has a single (restricted) R3 probability model built-in for a 2
component mixed layer. Because of the restrictions only 2 independent
variables are needed for this model; W and P (if2 3⁄ ⩽ W < 3 4⁄)
or P (if3 4⁄ ⩽ W ⩽ 1).

The restrictions for this model, that:

– only mixed layers with more than 2/3 of the first layer type can
be described

– no two layers of the second type occur after each other

– the probability of finding a layer of the first type in between
two layers of the second type is zero

This translates into the following conditions:

2 3⁄ ⩽ W ⩽ 1
P = P = 0
P = P = 1

The probabilities below are undefined but are set to zero or one to
make the matrix valid. The actual value actually has no meaning since
the weight fractions they should be multiplied with equal zero anyway
(e.g. W =W ⋅ P ⋅ P and W is zero since P is zero):

P = P = P = P = P = P = 0
P = P = P = P = P = P = 1

The remaining probabilities and weight fractions can be calculated as
follows and using equations 38 and 39:

W = 1 −W

ifW < 3 4⁄ : ifW ⩾ 3 4⁄ :
P is given P is given

P = 1 − P P = 1 − P

P = P ⋅
W − 2 ⋅ W

W
P = P ⋅

W

W − 2 ⋅ W
P = 1 − P P = 1 − P

W = 3 ⋅ W − 2
W = W = W = W = 0
W = W = W = 1 −W

 41

5. SOFTWARE LAYOUT

The general software layout of PyXRD is schematically presented in
Figure 1.

The most basic layer is inside the 'calculations' module. This module
contains all the basic functions and data structures to allow fast
calculations of X-ray diffraction patterns of disordered lamellar
structures. In effect it is an implementation of the matrix algorithm as
presented in the previous chapters. However, this layer is too basic to
be of immediate use to a non-technical user. A GUI has been created
to allow easier manipulation of objects. This is where the mvc
framework comes into play.

The mvc framework consists of three layers: a model layer containing
all the 'logic' and wrapping the data structures present in the
calculation layer. On top of this layer two more layers are provided: a
controller and a view. The view is the visual representation of a (or part
of a) model(s) while the controller provides the link between that view
and the underlying model(s). The mvc pattern is a common paradigm
which allows to separate so-called 'business logic' aspects from GUI
aspects, making it easier to debug these separately.

In the PyXRD source tree the models, views and controllers are
grouped topic-wise, meaning that all views, controllers and models for
a specific part (e.g. atoms, projects, phases, …) are grouped in a
module named accordingly. Common code is provided by the mvc
module. In future releases the mvc module might become a separate
dependency. For now it is included with PyXRD.

The actual calculations (as presented in the previous chapters) are
fully separated from the model layer into the calculations module. This
makes it easier to spread the calculations over several processes,
making efficient use of multi-core processors.

Aside from these layers, there are (more technical) aspects which are
not covered in this manual like input/output, plotting, refinement
support, etc. For details on these we refer to the source code and the
documentation therein.

42 Appendix A

5.1. MODEL HIERARCHY

5.1.1. OVERVIEW

An overview of the model hierarchy can be found in Figure 2. The
topmost model is the Project, which holds references to AtomTypes,
Phases, Specimens and Mixtures. Each of these can have references to
each other and several other objects each of which are discussed in
more detail below.

Figure 2: Overview of the model hierarchy in PyXRD

Figure 1: PyXRD's most important software layers

 43

5.1.2. ATOMTYPES AND ATOMS

The most basic building block is the AtomType. This object bundles all
the physical constants (e.g. charge, atomic weight, scattering
factors, ...) for a single ion (e.g. Fe2+, Fe3+, …) or for a small enough
molecule (i.e. H2O or glycol). When a new project is created a default
list of these AtomTypes is loaded, using the atomic scattering factors
as published in (Waasmaier and Kirfel, 1995).

Atom objects hold a reference to one of these AtomTypes and has
additional information about the position of that atom in the structure
(a z coordinate) and its multiplicity (as atoms are projected, we can
group them together). Lists of these atom objects are used in the
Component object to describe the layers and interlayers. They also
support expendable interlayers in which the z coordinate of the Atom
is recalculated keeping the relative alignment correct.

5.1.3. PHASES, COMPONENTS, ATOMRELATIONS AND

UNITCELLPROPERTIES

Phase objects contain all the information needed to calculate a one-
dimensional X-ray diffraction pattern for a (mixed-layer) mineral. A
Phase is built out of (i) a Probability object, (ii) an object describing the
coherent scattering domain size (CSDS) and (iii) one or more
Component objects which describe the different types of layers in the
Phase. The Probability object describes how these layers are stacked
using Markovian statistics and the Reichweite concept as detailed in
chapter . The CSDS object describes what type of coherent scattering
domain size distribution should be used and contains the necessary
parameter values (e.g. average CSDS). Currently two types are
implemented: a generic log-normal distribution and a log-normal
distribution in which the average values published in Drits et al. (1997)
are used and the average CSDS is the only variable. Each phase also has
a σ* factor which allows to correct for incomplete preferred
orientation (see chapter).

Component objects describe the size, structure, composition and
(variation in) basal spacing for each layer type in that phase. A
Component contains two lists of Atom objects. The first list contains

44 Appendix A

atoms in the silicate lattice while the other list contains the variable
interlayer ions. This way, the silicate structure can be shared between
different phases (e.g. AD and EG states) while keeping the interlayer
contents separate. It also allows to automatically adjust the positions
of the interlayer content in function of the basal spacing, as the size of
the silicate lattice can be determined and be used as a reference plane
for scaling the interlayer atom positions.

Inside Components one can also define several AtomRelations: these
describe relations between atoms. One such relation are AtomRatio's,
for example the octahedral composition of a dioctahedral clay mineral
can be expressed as the ratio of iron atoms over the sum of iron and
aluminium atoms in that octahedral position. The AtomRatio object will
then make sure that the sum of both Atoms multiplicity is always 4, and
that their relative amounts is controlled by a certain ratio set by the
user. Both the value of the sum and the ratio can be adjusted. Another
example is interlayer cation contents, which are controlled by an
AtomContents object.

Another type of AtomRelation are UnitCellProperties. These objects
describe the b and c axis length of the unti cell. This object is needed,
since these properties are inter-dependent (i.e. the b-length can be
calculated if the c-length is known and vice-versa) and dependent on
the composition (e.g. the octahedral iron content). A UnitCellProperty
object allows to define these simple mathematical relations, making
the adjustment of the unit cell size automatic.

5.1.4. SPECIMENS, MIXTURE AND PROJECTS

Specimen objects contain all the information regarding the
experimental data (the actual measurements, sample size, etc.) and
the Goniometer set up (radius, slit sizes, etc.). They also have a bunch
of visual settings (e.g. linwidth, line color, wether to display phase
profiles separately, …) and import/export functionality.

Maybe slightly counter-intuitive, they do not hold a direct reference
to phases, but are linked with them using Mixture objects.

Mixture objects link phases and specimens together. To visualize this,
in the user interface, a table is created with just as many rows as there

 45

are Phases in the Mixture and just as many columns as there are
Specimens in the Mixture. At the column headers there are slots where
the user can select the Specimen and in each cell of the grid there are
slots where the user can select the corresponding Phase. This allows to
select different states of smectite for an AD and an EG pattern loaded
in a Specimen (Figure 3), while keeping unaffected Phases, like
kaolinites and micas identical.

Once a Mixture is created a number of parameters are available for
automatic refinement (e.g. weight fractions from the Probability
object, the average CSDS, etc.). In the refinement dialog, the user can
select which parameters it would like to improve and in between which
minimum and maximum values the ideal value should be searched for.
A number of different refinement methods are available for this
purpose.

As mentioned, Project objects group together all Mixtures, Specimens,
Phases and AtomTypes and provides a way to store and (re)load these
Projects.

46 Appendix A

Figure 3: screenshot showing the 'Edit Mixtures' dialog where a user can
link different phases (Kaolinite, Illite, ISS R0 Ca-AD, ...) with the
corresponding specimen (S1AD.dat, S1EG.dat).

 47

6. REFERENCES

Drits, V. and Tchoubar, C. (1990). X-Ray Diffraction by Disordered
Lamellar Structures: Theory and Applications to
Microdivided Silicates and Carbons. pp. 369. Springer-
Verlag, Berlin, Germany.

Drits, V., Środon, J. and Eberl, D.D. (1997). XRD Measurement of
mean crystallite thickness of illite and illite/smectite:
reappraisal of the Kubler Index and the Scherrer
Equation. Clays and Clay Minerals, 45, 461-475.

Ergun, S. (1970). X-ray scattering by very defective lattices. Phys.
Rev. B, 131, 3371-3380.

Moore, D.M. and Reynolds, R. C. (1997) X-Ray Diffraction and
the Identification and Analysis of Clay Minerals, 2nd
edition. pp. 400. Oxford University Press, New York, USA.

Plançon A. (1981). Diffraction by layer structures containing
different kinds of layers and stacking faults. Journal of
Applied Crystallography, 14, 300-304.

Reynolds, R.C. (1986). The Lorentz-Polarisation factor and
preferred orientation in oriented clay aggregates. Clays
and Clay Minerals, 34, 359-367.

Waasmaier D. and Kirfel A. (1995). New analytical scattering
factor functions for free atoms and ions. Acta Cryst. A,
51, 416-413

