1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
.. _pyzoltan-docs:
=========================
Introduction to PyZoltan
=========================
.. py:currentmodule:: pyzoltan.core.zoltan
PyZoltan is as the name suggests, is a Python wrapper for the Zoltan_ data
management library. Although it's primary purpose is a tool for dynamic load
balancing for PySPH, the features are general enough to warrant a separate
discussion. In this document, we will introduce the PyZoltan interface in it's
native non-SPH format.
In PyZoltan, we wrap the specific routines and objects that we wish to
use. The following features of Zoltan are currently supported:
- Dynamic load balancing using geometric algorithms
- Unstructured point-to-point communication
- Distributed data directories
PyZoltan interfaces with Zoltan, which is itself a library that is
called to perform specific tasks on the application data. Information
about the application data is provided to Zoltan through the `method
of callbacks
<http://www.cs.sandia.gov/Zoltan/ug_html/ug_query.html>`_, whereby,
query functions are registered with Zoltan. These query functions are
called internally by Zoltan and are responsible to provide the correct
information about the application data to the library. The user is
responsible to make available this data in consonance with the
application requirement.
-------------------------------------
A simple example: Partitioning points
-------------------------------------
The following simple example demonstrates the partitioning of a random
collection of points in the unit cube :math:`[0,1]^3`. The objects to
be partitioned in this case is therefore the points themselves which
can be thought of as particles in an SPH simulation. We begin with
some imports:
.. code-block:: python
# Imports
import mpi4py.MPI as mpi
from cyarray.api import UIntArray, DoubleArray
from pyzoltan.core import zoltan
from numpy import random
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
comm = mpi.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
colors = ['r', 'g', 'b', 'y', 'm', 'k', 'c', 'burlywood']
^^^^^^^^^^^^^^^^^
Creating the data
^^^^^^^^^^^^^^^^^
After the initial imports, we define the local data on each processor
and broadcast this to the root node for plotting the initial
assignment:
.. code-block:: python
numPoints = 1<<12
x = random.random( numPoints )
y = random.random( numPoints )
z = random.random( numPoints )
gid = np.arange( numPoints*size, dtype=np.uint32 )[rank*numPoints:(rank+1)*numPoints]
X = np.zeros( size * numPoints )
Y = np.zeros( size * numPoints )
Z = np.zeros( size * numPoints )
GID = np.arange( numPoints*size, dtype=np.uint32 )
comm.Gather( sendbuf=x, recvbuf=X, root=0 )
comm.Gather( sendbuf=y, recvbuf=Y, root=0 )
comm.Gather( sendbuf=z, recvbuf=Z, root=0 )
.. note::
Each object (point) is assigned a *unique* global identifier (the
`gid` array). The identifiers must be unique for a load balancing
cycle.
.. note::
The data type of the global identifiers is of type `ZOLTAN_ID_TYPE`
(default uint32). This is set at the time of building the Zoltan
library.
^^^^^^^^^^^^^^^^^^^^^^^^^^^
ZoltanGeometricPartitioner
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :py:class:`ZoltanGeometricPartitioner` is a concrete sub-class of
:py:class:`PyZoltan`. This class defines all helper methods needed for
a domain decomposition using a geometric algorithm. After the data has
been initialized, we instantiate the
:py:class:`ZoltanGeometricPartitioner` object and set some parameters:
.. code-block:: python
xa = DoubleArray(numPoints); xa.set_data(x)
ya = DoubleArray(numPoints); ya.set_data(y)
za = DoubleArray(numPoints); za.set_data(z)
gida = UIntArray(numPoints); gida.set_data(gid)
pz = zoltan.ZoltanGeometricPartitioner(
dim=3, comm=comm, x=xa, y=ya, z=za, gid=gida)
pz.set_lb_method('RCB')
pz.Zoltan_Set_Param('DEBUG_LEVEL', '1')
.. note::
We use CArrays internally to represent the data in PyZoltan. This
is done mainly for compatibility with the PySPH particle data
structure.
The complete list of parameters can be found in the Zoltan reference
manual. All parameters are supported through the wrapper
:py:meth:`PyZoltan.Zoltan_Set_Param` method. In this example, we set
the desired load balancing algorithm (Recursive Coordinate Bisection)
and the output debug level.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Calling the load balance function
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Once all the parameters are appropriately set-up, we can ask Zoltan to
provide new assignments for the particles:
.. code-block:: python
pz.Zoltan_LB_Balance()
This will call the chosen load balancing function internally and upon
return, set a number of lists (arrays) indicating which objects need
to be exported and which objects need to be imported. The data
attributes for the export lists are:
- *numExport* : Number of objects to be exported
- *exportLocalids* : Local indices of the objects to be exported
- *exportGlobalids* : Global indices of the objects to be exported
- *exportProcs* : A list of size `numExport` indicating to which processor each object is exported
And similar arrays for the import lists. The import/export lists
returned by Zoltan give an application all the information required to
initiate the data transfer.
.. note::
Zoltan does **not** perform the data transfer. The data transfer
must be done by the application or using the Unstructured
communication utilities provided by Zoltan.
Given the new assignments, we once again broadcast this to the root to
plot the final partition. The partition generated by this approach is
shown below.
.. figure:: ../Images/point-partition.png
:scale: 50
:align: center
Point assignment to 4 processors where color indicates
assignment.
We can see that the `RCB` method has resulted in cuts orthogonal to
the domain axes. Each processor has exactly one fourth of the total
number of particles.
The code for this example can be found in
`pyzoltan/core/tests/3d_partition.py`
----------------------------------
Inverting the Import/Export lists
----------------------------------
In the example above, Zoltan returned a list of objects that were to
be imported and exported. There arise situations in applications
however, when only one set of arrays is available. For example, a
common scenario is that we might know which objects need to be
exported to remote processors but do not know in advance which objects
need to be imported. The matter is complicated for dynamic
applications because without a knowledge of the number of objects to
be imported, we cannot allocate buffers of appropriate size on the
receiving end.
For these scenarios when only one set (either import or export) of
arrays is available, we use the
:py:meth:`PyZoltan.Zoltan_Invert_Lists` method to get the other
set.
:py:class:`PyZoltan` exposes this important utility function from
Zoltan by assuming that the export lists are known to the
application. Upon return from this method, the relevant import lists
are also known. Note that the behaviour of import and export lists can
be interchanged from the application.
A simple example demonstrating this is given below:
.. code-block:: python
from cyarray import carray
from pyzoltan.core import zoltan
import numpy
import mpi4py.MPI as mpi
comm = mpi.COMM_WORLD; rank = comm.Get_rank(); size = comm.Get_size()
if rank == 0:
proclist = numpy.array( [1, 1, 2, 1], dtype=numpy.int32 )
locids = numpy.array( [1, 3, 5, 7], dtype=numpy.uint32 )
glbids = numpy.array( [1, 3, 5, 7], dtype=numpy.uint32 )
if rank == 1:
proclist = numpy.array( [0, 2, 0], dtype=numpy.int32 )
locids = numpy.array( [1, 3, 5], dtype=numpy.uint32 )
glbids = numpy.array( [11, 33, 55], dtype=numpy.uint32 )
if rank == 2:
proclist = numpy.array( [1, 1], dtype=numpy.int32 )
locids = numpy.array( [1, 3], dtype=numpy.uint32 )
glbids = numpy.array( [111, 333], dtype=numpy.uint32 )
# create the Zoltan object
zz = zoltan.PyZoltan(comm)
# set the export lists
numExport = proclist.size; zz.numExport = numExport
zz.exportLocalids.resize(numExport); zz.exportLocalids.set_data(locids)
zz.exportGlobalids.resize(numExport); zz.exportGlobalids.set_data(glbids)
zz.exportProcs.resize(numExport); zz.exportProcs.set_data(proclist)
print('Proc %d to send %s to %s'%(rank, glbids, proclist))
# Invert the lists
zz.Zoltan_Invert_Lists()
# get the import lists
numImport = zz.numImport
importlocids = zz.importLocalids.get_npy_array()
importglbids = zz.importGlobalids.get_npy_array()
importprocs = zz.importProcs.get_npy_array()
print('Proc %d to recv %s from %s'%(rank, importglbids, importprocs))
In this example (which is hard coded for up to 3 processors), each
processor artificially creates a list of objects it knows it must send
to remote processors, which is set-up as the export lists for the
:py:class:`PyZoltan` object. Thereafter,
:py:meth:`PyZoltan.Zoltan_Invert_Lists` is called to get the lists
that must be imported by each processor. The output from this example
is shown below::
$ mpirun -n 3 python invert_lists.py
Proc 2 to send [111 333] to [1 1]
Proc 1 to send [11 33 55] to [0 2 0]
Proc 0 to send [1 3 5 7] to [1 1 2 1]
Proc 2 to recv [ 5 33] from [0 1]
Proc 0 to recv [11 55] from [1 1]
Proc 1 to recv [ 1 3 7 111 333] from [0 0 0 2 2]
We can see that after a call to this method, each processor knows of
remote data that must be received. In an application, this information
can be used to effect the data transfer.
Another option is to use the unstructured communication utilities
offered by Zoltan. This is described next.
------------------------------------------
Unstructured point to point communication
------------------------------------------
.. py:currentmodule:: pyzoltan.core.zoltan_comm
In the previous section, we saw how to use the Zoltan library function
to invert a set of export indices to get corresponding import
indices. Naturally, with a little bit of work, we can structure the
requisite communication (`MPI` send and receives) to exchange the
data.
This set of operations is fairly common and Zoltan_ (PyZoltan)
provides a very convenient utility called :py:class:`ZComm` to perform
such communication. The typical use case for :py:class:`ZComm` is when
we know the list of local objects to send to remote processors but
have no information about the objects to be received. An example
(`pyzoltan/core/tests/zcomm.py`) demonstrating the use of the
:py:class:`ZComm` object is outlined below.
The example can be run with an arbitrary number of processors. Each
processor allocates some data locally and randomly picks :math:`5` of
these objects to be sent to remote processors. The remote processors
are also picked randomly:
.. code-block:: python
import mpi4py.MPI as mpi
import numpy as np
from numpy import random
# import the unstructured communication package
from pyzoltan.core import zoltan_comm
from pyzoltan.core import zoltan
# MPI comm, rank and size
comm = mpi.COMM_WORLD; rank = comm.Get_rank(); size = comm.Get_size()
# each processor creates some random data
numObjectsTotal = 1<<10
x = random.random(numObjectsTotal)
gids = np.array( np.arange(size * numObjectsTotal) )[rank*numObjectsTotal:(rank+1)*numObjectsTotal]
gids = gids.astype(np.uint32)
# arbitrarily assign some objects to be sent to some other processor
nsend = np.int32( random.random_integers(low=1, high=10) )
object_ids = random.random_integers( low=0, high=numObjectsTotal, size=nsend )
proclist = random.random_integers(low=0, high=size-1, size=nsend).astype(np.int32)
my_indices = np.where(proclist == rank)[0]
proclist[my_indices] = (rank+1)%size
This information is sufficient enough to instantiate the
:py:class:`ZComm` object which will be used as the communication plan
to exchange this data. Once the communication plan is setup, each
processor knows of the data it must receive with the `ZComm.nreturn`
attribute. This is used to allocate receive buffers:
.. code-block:: python
# create the ZComm object
tag = np.int32(0)
zcomm = zoltan_comm.ZComm(comm, tag=tag, nsend=nsend, proclist=proclist)
# the data to send and receive
senddata = x[ object_ids ]
recvdata = np.ones( zcomm.nreturn )
With the send buffer and the allocated receive buffer, we can perform
the communication using the :py:meth:`ZComm.Comm_Do` method:
.. code-block:: python
# use zoltan to exchange doubles
print("Proc %d, Sending %s to %s"%(rank, senddata, proclist))
zcomm.Comm_Do(senddata, recvdata)
print("Proc %d, Received %s"%(rank, recvdata))
Note that the user does not need to explicitly write the `MPI` send
and receive calls. All that is required from the user is to correctly
allocate the data on the receive side. The output from this example is
(it will vary given the use of random numbers)::
$ mpirun -n 3 python zcomm.py
Proc 2, Sending [ 0.83476393 0.07041833 0.20059537 0.7722934 0.4529769 ] to [0 1 0 0 1]
Proc 2, Received [ 0.50391764 0.40028207]
Proc 0, Sending [ 0.50391764] to [2]
Proc 1, Sending [ 0.29755463 0.40028207 0.69433472] to [0 2 0]
Proc 1, Received [ 0.07041833 0.4529769 ]
Proc 0, Received [ 0.29755463 0.69433472 0.83476393 0.20059537 0.7722934 ]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Using the plan for similar communication
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The :py:class:`ZComm` object was used to send values of type `float64`
in this example. If the number of objects to be sent and their
destinations are the same, we can modify the :py:class:`ZComm` to send
other objects. For example, the same object can be used to exchange
the global indices (`uint32`) like so:
.. code-block:: python
senddata = gids[ object_ids ]
recvdata = np.ones(zcomm.nreturn, dtype=np.uint32)
zcomm.set_nbytes(recvdata.itemsize)
print("Proc %d, Sending %s to %s"%(rank, senddata, proclist))
zcomm.Comm_Do(senddata, recvdata)
print("Proc %d, Received %s"%(rank, recvdata))
.. note::
The :py:meth:`ZComm.set_nbytes` method is used to indicate the size
of the individual objects that is communicated via
:py:meth:`ZComm.Comm_Do`
The output with this change is::
$ mpirun -n 3 python zcomm.py
Proc 1, Sending [1054 1692 2034] to [0 2 0]
Proc 0, Sending [214] to [2]
Proc 2, Sending [2720 3034 2511 2412 2975] to [0 1 0 0 1]
Proc 2, Received [ 214 1692]
Proc 1, Received [3034 2975]
Proc 0, Received [1054 2034 2720 2511 2412]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Reversing the communication plan
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It is often the case for dynamic applications that objects initially
shared with remote processors have their values updated on remote
processors. Subsequently, these updated values are required on the
originating processor, necessitating them to be communicated back.
For such scenarios, the communication plan represented by
:py:class:`ZComm` can be used to *reverse* the communication. That is
the data that was originally sent will be treated as a receive and
vice-versa.
To illustrate the use of this feature, we continue with our
example. The received data (array of unsigned ints) is modified on the
remote processor and communicated back using the
:py:meth:`ZComm.Comm_Do_Reverse` method:
.. code-block:: python
recvdata[:] = rank
updated_info = np.zeros(zcomm.nsend, dtype=senddata.dtype)
print('Proc %d, sending updated data %s'%(rank, recvdata))
zcomm.Comm_Do_Reverse(recvdata, updated_info)
print('Proc %d, received updated data %s'%(rank, updated_info))
.. note::
The size of the buffer each processor will receive in the reverse
communication phase is equal to the number of objects initially
sent. This is available through the `ZComm.send` attribute
The output from this when run on 3 processors is::
$ mpirun -n 3 python zcomm.py
Proc 1, Sending [1054 1692 2034] to [0 2 0]
Proc 0, Sending [214] to [2]
Proc 2, Sending [2720 3034 2511 2412 2975] to [0 1 0 0 1]
Proc 2, Received [ 214 1692]
Proc 1, Received [3034 2975]
Proc 0, Received [1054 2034 2720 2511 2412]
Proc 0, sending updated data [0 0 0 0 0]
Proc 2, sending updated data [2 2]
Proc 1, sending updated data [1 1]
Proc 0, received updated data [2]
Proc 1, received updated data [0 2 0]
Proc 2, received updated data [0 1 0 0 1]
------------------------------------------
Distributed data directories
------------------------------------------
.. py:currentmodule:: pyzoltan.core.zoltan_dd
The Zoltan `Distributed Data Directory`_ utility is a convenient way
for a processor to locate remote data. It is implemented as a parallel
hash map, keyed on the object identifiers (global indices) and with
arbitrary user data associated with each entry.
The use of this feature is highly problem dependent since the user
defined data will necessarily change for different applications. We
use a simple example demonstrating it's use. Each processor stores
ownership of the object in the distributed directory *without* any
user data associated with each entry.
We begin with the standard set of imports and create some data on each
processor and assign each object a unique global identifier:
.. code-block:: python
import numpy
import pyzoltan.api as pz
import mpi4py.MPI as mpi
comm = mpi.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# every processor owns some data
numObjectsTotal = 5
my_indices = numpy.array( range( rank*numObjectsTotal,(rank+1)*numObjectsTotal ), dtype=numpy.uint32 )
gid = pz.UIntArray(my_indices.size); gid.set_data( my_indices )
Additionally, each processor has an **IntArray** which denotes object
assignment:
.. code-block:: python
part_assignment = numpy.array( [rank]*numObjectsTotal, dtype=numpy.int32 )
part = pz.IntArray( part_assignment.size ); part.set_data( part_assignment )
This is sufficient data to create the distributed directory:
.. code-block:: python
# create a zoltan dd and store the object assignments
dd = pz.Zoltan_DD(comm)
# update the dd with the data
dd.Zoltan_DD_Update(gid, part)
Note that after instantiation of the :py:class:`Zoltan_DD` object, we
call the :py:meth:`Zoltan_DD.Zoltan_DD_Update` method to update the
data associated with this directory. Now, given the shared data
available with each processor, we can query for object assignments. In
the example below, each processor queries for the objects with global
indices `numObjectsTotal + rank` and `numObjectsTotal - rank`:
.. code-block:: python
# now we can query the dd
owner_data = pz.IntArray() # output array for the object data assignment
owner_parts = pz.IntArray() # output array for the object assignment
# every processor requests for information about some data
query_gids = pz.UIntArray(2); query_gids.set_data( numpy.array([numObjectsTotal+rank,
numObjectsTotal-rank], dtype=numpy.uint32) )
# use Zoltan_DD_Find to query the data
dd.Zoltan_DD_Find(query_gids, owner_parts, owner_data)
The result from this quey with :math:`3` processors is shown below::
$ mpirun -n 3 python zoltan_dd.py
Processor 0, query_gids = [5 5], owner_parts = [1 1], owner_data = [1 1]
Processor 1, query_gids = [6 4], owner_parts = [1 0], owner_data = [1 0]
Processor 2, query_gids = [7 3], owner_parts = [1 0], owner_data = [1 0]
.. _`Distributed Data Directory`: http://www.cs.sandia.gov/Zoltan/ug_html/ug_util_dd.html
.. _Zoltan: http://www.cs.sandia.gov/Zoltan/
|