File: summarise.py

package info (click to toggle)
pyzor 1%3A1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 868 kB
  • sloc: python: 7,266; makefile: 153; sh: 28
file content (225 lines) | stat: -rw-r--r-- 7,010 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#! /usr/bin/env python
# -*- coding: utf-8 -*-

"""Summarise Pyzor database.

Generate a summary of the current state of a Pyzor database.

This currently only works with a MySQL (or compatible) database.
This can currently only output to a Slack channel.

There are extra requirements for this script:

 * click
 * requests
"""

import os
import datetime
import ConfigParser

import MySQLdb

import requests

import click


@click.command()
@click.option("--config", default=None)
@click.argument("hook")
def summarise(config, hook):
    """Generate a summary of a Pyzor database."""
    if config is None:
        config = os.path.expanduser("~/.pyzor/config")
    conf = ConfigParser.ConfigParser()
    conf.read(config)
    (host, user, password, db_name, table) = conf.get("server", "DigestDB").split(",")
    db = MySQLdb.connect(
        host=host,
        user=user,
        db=db_name,
        passwd=password,
    )
    c = db.cursor()

    # TODO: With a newer Python, this could use f-strings.
    data = {}
    c.execute("SELECT COUNT(*) FROM `%s`" % table)
    data["total"] = c.fetchone()[0]
    c.execute(
        "SELECT MIN(wl_entered), MIN(wl_updated), "
        "MIN(r_entered), MIN(r_updated), MAX(wl_entered), MAX(wl_updated), "
        "MAX(r_entered), MAX(r_updated) from `%s`" % table
    )
    (
        data["oldest_white"],
        data["oldest_white_update"],
        data["oldest_spam"],
        data["oldest_spam_update"],
        data["newest_white"],
        data["newest_white_update"],
        data["newest_spam"],
        data["newest_spam_update"],
    ) = c.fetchone()
    c.execute("SELECT MAX(r_count), MAX(wl_count) FROM `%s`" % table)
    data["max_spam"], data["max_white"] = c.fetchone()

    # Frequency table for counts.
    for column in ("r_count", "wl_count"):
        buckets = []
        for bucket in range(10):
            low = bucket * 100
            high = (bucket + 1) * 100
            c.execute(
                "SELECT COUNT(*) FROM `%s` WHERE %s BETWEEN %%s AND %%s"
                % (table, column),
                (low, high),
            )
            buckets.append(c.fetchone()[0])
        data[column] = buckets

    # Frequency table for age.
    for column in ("r_updated", "wl_updated"):
        buckets = []
        for bucket in range(10):
            now = datetime.datetime.now()
            low = now - datetime.timedelta(days=(bucket + 1) * 7)
            high = now - datetime.timedelta(days=bucket * 7)
            c.execute(
                "SELECT COUNT(*) FROM `%s` WHERE %s BETWEEN %%s AND %%s"
                % (table, column),
                (low, high),
            )
            buckets.append(c.fetchone()[0])
        data[column] = buckets

    data["table"] = table
    notify_slack(hook, data)

    c.close()
    db.close()


# Borrowed from https://raw.githubusercontent.com/kennethreitz/spark.py/master/spark.py
def spark_string(ints, fit_min=False):
    """Returns a spark string from given iterable of ints.

    Keyword Arguments:
    fit_min: Matches the range of the sparkline to the input integers
             rather than the default of zero. Useful for large numbers with
             relatively small differences between the positions
    """
    ticks = " ▁▂▃▄▅▆▇█"
    min_range = min(ints) if fit_min else 0
    step_range = max(ints) - min_range
    step = (step_range / float(len(ticks) - 1)) or 1
    return "".join(ticks[int(round((i - min_range) / step))] for i in ints)


def notify_slack(hook, data):
    """Send a notification containing a summary of a Pyzor database to a
    Slack channel."""
    text = "Pyzor summary for _%(table)s_ (%(total)s digests)" % data
    format = "%d %b %Y"
    if data["max_spam"] < 100:
        spam_colour = "danger"
    else:
        spam_colour = "good"
    if data["max_white"] < 100:
        white_colour = "danger"
    else:
        white_colour = "good"
    if (datetime.datetime.now() - data["newest_spam_update"]).days > 2:
        spam_age_colour = "danger"
    else:
        spam_age_colour = "good"
    if (datetime.datetime.now() - data["newest_white_update"]).days > 2:
        white_age_colour = "danger"
    else:
        white_age_colour = "good"
    attachments = [
        {
            "title": "Spam Reports",
            "text": spark_string(data["r_count"], fit_min=True),
            "fields": [
                {
                    "title": "Most common count",
                    "value": data["max_spam"],
                    "short": True,
                },
            ],
            "color": spam_colour,
        },
        {
            "title": "Whitelist Reports",
            "text": spark_string(data["wl_count"], fit_min=True),
            "fields": [
                {
                    "title": "Most common count",
                    "value": data["max_white"],
                    "short": True,
                },
            ],
            "color": white_colour,
        },
        {
            "title": "Spam Age",
            "text": spark_string(data["r_updated"], fit_min=True),
            "fields": [
                {
                    "title": "Oldest",
                    "value": data["oldest_spam"].strftime(format),
                    "short": True,
                },
                {
                    "title": "Oldest Update",
                    "value": data["oldest_spam_update"].strftime(format),
                    "short": True,
                },
                {
                    "title": "Latest",
                    "value": data["newest_spam"].strftime(format),
                    "short": True,
                },
                {
                    "title": "Latest Update",
                    "value": data["newest_spam_update"].strftime(format),
                    "short": True,
                },
            ],
            "color": spam_age_colour,
        },
        {
            "title": "Whitelist Age",
            "text": spark_string(data["wl_updated"], fit_min=True),
            "fields": [
                {
                    "title": "Oldest",
                    "value": data["oldest_white"].strftime(format),
                    "short": True,
                },
                {
                    "title": "Oldest Update",
                    "value": data["oldest_white_update"].strftime(format),
                    "short": True,
                },
                {
                    "title": "Latest",
                    "value": data["newest_white"].strftime(format),
                    "short": True,
                },
                {
                    "title": "Latest Update",
                    "value": data["newest_white_update"].strftime(format),
                    "short": True,
                },
            ],
            "color": white_age_colour,
        },
    ]
    response = requests.post(hook, json={"text": text, "attachments": attachments})


if __name__ == "__main__":
    summarise()