File: test_filter.py

package info (click to toggle)
q2-alignment 2024.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 812 kB
  • sloc: python: 1,899; makefile: 32; sh: 13
file content (166 lines) | stat: -rw-r--r-- 6,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import skbio
import numpy as np
import unittest

from q2_alignment._filter import _most_conserved
from q2_alignment import mask


class MostConservedTests(unittest.TestCase):

    def test_basic(self):
        frequencies = [{'A': 1/3, '-': 2/3}, {'G': 1.0}, {'A': 2/3, 'C': 1/3}]
        actual = _most_conserved(frequencies, skbio.DNA)
        expected = [1.0, 1.0, 2./3.]
        self.assertEqual(actual, expected)

        frequencies = [{'A': 1/4, '-': 3/4}, {'G': 1.0}, {'A': 1/2, 'C': 1/2},
                       {'A': 1/4, 'C': 1/4, 'G': 1/4, 'T': 1/4}]
        actual = _most_conserved(frequencies, skbio.DNA)
        expected = [1.0, 1.0, 0.5, 0.25]
        self.assertEqual(actual, expected)

    def test_N(self):
        frequencies = [{'A': 1/3, '-': 2/3}, {'G': 1.0}, {'A': 2/3, 'N': 1/3}]
        actual = _most_conserved(frequencies, skbio.DNA)
        expected = [1.0, 1.0, 2./3.]
        self.assertEqual(actual, expected)

    def test_unknown_gap_mode(self):
        frequencies = [{'A': 1/3, '-': 2/3}, {'G': 1.0}, {'A': 2/3, 'C': 1/3}]
        with self.assertRaises(ValueError):
            _most_conserved(frequencies, skbio.DNA, gap_mode='not-real')

    def test_all_gap(self):
        frequencies = [{'-': 1.0}]
        actual = _most_conserved(frequencies, skbio.DNA)
        expected = [0.0]
        self.assertEqual(actual, expected)

    def test_empty(self):
        frequencies = []
        actual = _most_conserved(frequencies, skbio.DNA)
        expected = []
        self.assertEqual(actual, expected)


class MaskTests(unittest.TestCase):

    def test_basic(self):
        alignment = skbio.TabularMSA(
            [skbio.DNA('AGA', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('-GA', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('-GC', metadata={'id': 'seq3', 'description': ''})]
        )

        actual = mask(alignment, max_gap_frequency=0.05, min_conservation=0.30)

        expected = skbio.TabularMSA(
            [skbio.DNA('GA', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('GA', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('GC', metadata={'id': 'seq3', 'description': ''})]
        )

        self.assertEqual(actual, expected)

    def test_gap_boundaries(self):
        alignment1 = skbio.TabularMSA(
            [skbio.DNA('-', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq3', 'description': ''})]
        )
        alignment2 = skbio.TabularMSA(
            [skbio.DNA('A', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('A', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('A', metadata={'id': 'seq3', 'description': ''})]
        )

        actual = mask(alignment1, max_gap_frequency=1.0, min_conservation=0.0)
        self.assertEqual(actual, alignment1)

        actual = mask(alignment2, max_gap_frequency=0.0, min_conservation=0.0)
        self.assertEqual(actual, alignment2)

    def test_error_on_empty_alignment_gap_boundary(self):
        alignment1 = skbio.TabularMSA(
            [skbio.DNA('A', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq3', 'description': ''})]
        )

        self.assertRaisesRegex(ValueError,
                               " 0.00% of positions were retained by the gap",
                               mask, alignment1, max_gap_frequency=0.1,
                               min_conservation=0.0)

    def test_conservation_boundaries(self):
        alignment1 = skbio.TabularMSA(
            [skbio.DNA('A', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('A', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('A', metadata={'id': 'seq3', 'description': ''})])
        alignment2 = skbio.TabularMSA(
            [skbio.DNA('-', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq3', 'description': ''})])

        actual = mask(alignment1, max_gap_frequency=1.0, min_conservation=1.0)
        self.assertEqual(actual, alignment1)

        actual = mask(alignment2, max_gap_frequency=1.0, min_conservation=0.0)
        self.assertEqual(actual, alignment2)

    def test_error_on_empty_alignment_conservation_boundary(self):
        alignment1 = skbio.TabularMSA(
            [skbio.DNA('A', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('C', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('G', metadata={'id': 'seq3', 'description': ''})])

        self.assertRaisesRegex(ValueError,
                               " 0.00% of positions were retained by the con",
                               mask, alignment1, max_gap_frequency=1.0,
                               min_conservation=0.5)

    def test_invalid_gap_threshold(self):
        alignment = skbio.TabularMSA(
            [skbio.DNA('-', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq3', 'description': ''})]
        )
        eps = np.finfo(float).eps
        with self.assertRaises(ValueError):
            mask(alignment, max_gap_frequency=0.0 - eps)
        with self.assertRaises(ValueError):
            mask(alignment, max_gap_frequency=1.0 + eps)

    def test_invalid_conservation_threshold(self):
        alignment = skbio.TabularMSA(
            [skbio.DNA('-', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('-', metadata={'id': 'seq3', 'description': ''})]
        )
        eps = np.finfo(float).eps
        with self.assertRaises(ValueError):
            mask(alignment, min_conservation=0.0 - eps)
        with self.assertRaises(ValueError):
            mask(alignment, min_conservation=1.0 + eps)

    def test_empty_input(self):
        alignment = skbio.TabularMSA(
            [skbio.DNA('', metadata={'id': 'seq1', 'description': ''}),
             skbio.DNA('', metadata={'id': 'seq2', 'description': ''}),
             skbio.DNA('', metadata={'id': 'seq3', 'description': ''})]
            )
        with self.assertRaises(ValueError):
            mask(alignment)

        alignment = skbio.TabularMSA([])
        with self.assertRaises(ValueError):
            mask(alignment)