1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import json
import importlib
import inspect
import warnings
from itertools import chain, islice
import subprocess
import pandas as pd
from qiime2.plugin import (
Int, Str, Float, Bool, Choices, Range, Threads, get_available_cores
)
from q2_types.feature_data import (
FeatureData, Taxonomy, Sequence, DNAIterator, DNAFASTAFormat)
from q2_types.feature_table import FeatureTable, RelativeFrequency
from sklearn.pipeline import Pipeline
import sklearn
from numpy import median, array, ceil
import biom
import skbio
import joblib
from ._skl import fit_pipeline, predict, _specific_fitters
from ._taxonomic_classifier import TaxonomicClassifier
from .plugin_setup import plugin, citations
def _load_class(classname):
err_message = classname + ' is not a recognised class'
if '.' not in classname:
raise ValueError(err_message)
module, klass = classname.rsplit('.', 1)
if module == 'custom':
module = importlib.import_module('.custom', 'q2_feature_classifier')
elif importlib.util.find_spec('.'+module, 'sklearn') is not None:
module = importlib.import_module('.'+module, 'sklearn')
else:
raise ValueError(err_message)
if not hasattr(module, klass):
raise ValueError(err_message)
klass = getattr(module, klass)
if not issubclass(klass, sklearn.base.BaseEstimator):
raise ValueError(err_message)
return klass
def spec_from_pipeline(pipeline):
class StepsEncoder(json.JSONEncoder):
def default(self, obj):
if hasattr(obj, 'get_params'):
encoded = {}
params = obj.get_params()
subobjs = []
for key, value in params.items():
if hasattr(value, 'get_params'):
subobjs.append(key + '__')
for key, value in params.items():
for so in subobjs:
if key.startswith(so):
break
else:
if hasattr(value, 'get_params'):
encoded[key] = self.default(value)
try:
json.dumps(value, cls=StepsEncoder)
encoded[key] = value
except TypeError:
pass
module = obj.__module__
type = module + '.' + obj.__class__.__name__
encoded['__type__'] = type.split('.', 1)[1]
return encoded
return json.JSONEncoder.default(self, obj)
steps = pipeline.get_params()['steps']
return json.loads(json.dumps(steps, cls=StepsEncoder))
def pipeline_from_spec(spec):
def as_steps(obj):
if 'ngram_range' in obj:
obj['ngram_range'] = tuple(obj['ngram_range'])
if '__type__' in obj:
klass = _load_class(obj['__type__'])
return klass(**{k: v for k, v in obj.items() if k != '__type__'})
return obj
steps = json.loads(json.dumps(spec), object_hook=as_steps)
return Pipeline(steps)
def warn_about_sklearn():
warning = (
'The TaxonomicClassifier artifact that results from this method was '
'trained using scikit-learn version %s. It cannot be used with other '
'versions of scikit-learn. (While the classifier may complete '
'successfully, the results will be unreliable.)' % sklearn.__version__)
warnings.warn(warning, UserWarning)
def populate_class_weight(pipeline, class_weight):
classes = class_weight.ids('observation')
class_weights = []
for weights in class_weight.iter_data():
class_weights.append(zip(classes, weights))
step, classifier = pipeline.steps[-1]
for param in classifier.get_params():
if param == 'class_weight':
class_weights = list(map(dict, class_weights))
if len(class_weights) == 1:
class_weights = class_weights[0]
pipeline.set_params(**{'__'.join([step, param]): class_weights})
elif param in ('priors', 'class_prior'):
if len(class_weights) != 1:
raise ValueError('naive_bayes classifiers do not support '
'multilabel classification')
priors = list(zip(*sorted(class_weights[0])))[1]
pipeline.set_params(**{'__'.join([step, param]): priors})
return pipeline
def fit_classifier_sklearn(reference_reads: DNAIterator,
reference_taxonomy: pd.Series,
classifier_specification: str,
class_weight: biom.Table = None) -> Pipeline:
warn_about_sklearn()
spec = json.loads(classifier_specification)
pipeline = pipeline_from_spec(spec)
if class_weight is not None:
pipeline = populate_class_weight(pipeline, class_weight)
pipeline = fit_pipeline(reference_reads, reference_taxonomy, pipeline)
return pipeline
plugin.methods.register_function(
function=fit_classifier_sklearn,
inputs={'reference_reads': FeatureData[Sequence],
'reference_taxonomy': FeatureData[Taxonomy],
'class_weight': FeatureTable[RelativeFrequency]},
parameters={'classifier_specification': Str},
outputs=[('classifier', TaxonomicClassifier)],
name='Train an almost arbitrary scikit-learn classifier',
description='Train a scikit-learn classifier to classify reads.',
citations=[citations['pedregosa2011scikit']]
)
def _autodetect_orientation(reads, classifier, n=100,
read_orientation=None):
reads = iter(reads)
try:
read = next(reads)
except StopIteration:
raise ValueError('empty reads input')
if not hasattr(classifier, "predict_proba"):
warnings.warn("this classifier does not support confidence values, "
"so read orientation autodetection is disabled",
UserWarning)
return reads
reads = chain([read], reads)
if read_orientation == 'same':
return reads
if read_orientation == 'reverse-complement':
return (r.reverse_complement() for r in reads)
first_n_reads = list(islice(reads, n))
result = list(zip(*predict(first_n_reads, classifier, confidence=0.)))
_, _, same_confidence = result
reversed_n_reads = [r.reverse_complement() for r in first_n_reads]
result = list(zip(*predict(reversed_n_reads, classifier, confidence=0.)))
_, _, reverse_confidence = result
if median(array(same_confidence) - array(reverse_confidence)) > 0.:
return chain(first_n_reads, reads)
return chain(reversed_n_reads, (r.reverse_complement() for r in reads))
def _autotune_reads_per_batch(reads, n_jobs):
# detect effective jobs. Will raise error if n_jobs == 0
if n_jobs == 0:
raise ValueError("Value other than zero must be specified as number "
"of jobs to run.")
else:
n_jobs = joblib.effective_n_jobs(n_jobs)
# we really only want to calculate this if running in parallel
if n_jobs != 1:
seq_count = subprocess.run(
['grep', '-c', '^>', str(reads)], check=True,
stdout=subprocess.PIPE)
# set a max value to avoid blowing up memory
return min(int(ceil(int(seq_count.stdout.decode('utf-8')) / n_jobs)),
20000)
# otherwise reads_per_batch = 20000, which has a modest memory overhead
else:
return 20000
def classify_sklearn(reads: DNAFASTAFormat, classifier: Pipeline,
reads_per_batch: int = 'auto', n_jobs: int = 1,
pre_dispatch: str = '2*n_jobs', confidence: float = 0.7,
read_orientation: str = 'auto'
) -> pd.DataFrame:
if n_jobs in (0, -1):
n_jobs = get_available_cores()
elif n_jobs < -1:
n_less = abs(n_jobs + 1)
n_jobs = get_available_cores(n_less=n_less)
try:
# autotune reads per batch
if reads_per_batch == 'auto':
reads_per_batch = _autotune_reads_per_batch(reads, n_jobs)
# transform reads to DNAIterator
reads = DNAIterator(
skbio.read(str(reads), format='fasta', constructor=skbio.DNA))
reads = _autodetect_orientation(
reads, classifier, read_orientation=read_orientation)
predictions = predict(reads, classifier, chunk_size=reads_per_batch,
n_jobs=n_jobs, pre_dispatch=pre_dispatch,
confidence=confidence)
seq_ids, taxonomy, confidence = list(zip(*predictions))
result = pd.DataFrame({'Taxon': taxonomy, 'Confidence': confidence},
index=seq_ids, columns=['Taxon', 'Confidence'])
result.index.name = 'Feature ID'
return result
except MemoryError:
raise MemoryError("The operation has run out of available memory. "
"To correct this error:\n"
"1. Reduce the reads per batch\n"
"2. Reduce number of n_jobs being performed\n"
"3. Use a more powerful machine or allocate "
"more resources ")
_classify_parameters = {
'reads_per_batch': Int % Range(1, None) | Str % Choices(['auto']),
'n_jobs': Threads,
'pre_dispatch': Str,
'confidence': Float % Range(
0, 1, inclusive_start=True, inclusive_end=True) | Str % Choices(
['disable']),
'read_orientation': Str % Choices(['same', 'reverse-complement', 'auto'])}
_parameter_descriptions = {
'confidence': 'Confidence threshold for limiting '
'taxonomic depth. Set to "disable" to disable '
'confidence calculation, or 0 to calculate '
'confidence but not apply it to limit the '
'taxonomic depth of the assignments.',
'read_orientation': 'Direction of reads with '
'respect to reference sequences. same will cause '
'reads to be classified unchanged; reverse-'
'complement will cause reads to be reversed '
'and complemented prior to classification. '
'"auto" will autodetect orientation based on the '
'confidence estimates for the first 100 reads.',
'reads_per_batch': 'Number of reads to process in each batch. If "auto", '
'this parameter is autoscaled to '
'min( number of query sequences / n_jobs, 20000).',
'n_jobs': 'The maximum number of concurrent worker processes. If -1 '
'all CPUs are used. If 1 is given, no parallel computing '
'code is used at all, which is useful for debugging. For '
'n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for '
'n_jobs = -2, all CPUs but one are used.',
'pre_dispatch': '"all" or expression, as in "3*n_jobs". The number of '
'batches (of tasks) to be pre-dispatched.'
}
plugin.methods.register_function(
function=classify_sklearn,
inputs={'reads': FeatureData[Sequence],
'classifier': TaxonomicClassifier},
parameters=_classify_parameters,
outputs=[('classification', FeatureData[Taxonomy])],
name='Pre-fitted sklearn-based taxonomy classifier',
description='Classify reads by taxon using a fitted classifier.',
input_descriptions={
'reads': 'The feature data to be classified.',
'classifier': 'The taxonomic classifier for classifying the reads.'
},
parameter_descriptions={**_parameter_descriptions},
citations=[citations['pedregosa2011scikit']]
)
def _pipeline_signature(spec):
type_map = {int: Int, float: Float, bool: Bool, str: Str}
parameters = {}
signature_params = []
pipeline = pipeline_from_spec(spec)
params = pipeline.get_params()
for param, default in sorted(params.items()):
# weed out pesky memory parameter from skl
# https://github.com/qiime2/q2-feature-classifier/issues/101
if param == 'memory':
continue
try:
json.dumps(default)
except TypeError:
continue
kind = inspect.Parameter.POSITIONAL_OR_KEYWORD
if type(default) in type_map:
annotation = type(default)
else:
annotation = str
default = json.dumps(default)
new_param = inspect.Parameter(param, kind, default=default,
annotation=annotation)
signature_params.append(new_param)
parameters[param] = type_map.get(annotation, Str)
return parameters, signature_params
def _register_fitter(name, spec):
parameters, signature_params = _pipeline_signature(spec)
def generic_fitter(reference_reads: DNAIterator,
reference_taxonomy: pd.Series,
class_weight: biom.Table = None, **kwargs) -> Pipeline:
warn_about_sklearn()
for param in kwargs:
try:
kwargs[param] = json.loads(kwargs[param])
except (json.JSONDecodeError, TypeError):
pass
if param == 'feat_ext__ngram_range':
kwargs[param] = tuple(kwargs[param])
pipeline = pipeline_from_spec(spec)
pipeline.set_params(**kwargs)
if class_weight is not None:
pipeline = populate_class_weight(pipeline, class_weight)
pipeline = fit_pipeline(reference_reads, reference_taxonomy,
pipeline)
return pipeline
generic_signature = inspect.signature(generic_fitter)
new_params = list(generic_signature.parameters.values())[:-1]
new_params.extend(signature_params)
return_annotation = generic_signature.return_annotation
new_signature = inspect.Signature(parameters=new_params,
return_annotation=return_annotation)
generic_fitter.__signature__ = new_signature
generic_fitter.__name__ = 'fit_classifier_' + name
plugin.methods.register_function(
function=generic_fitter,
inputs={'reference_reads': FeatureData[Sequence],
'reference_taxonomy': FeatureData[Taxonomy],
'class_weight': FeatureTable[RelativeFrequency]},
parameters=parameters,
outputs=[('classifier', TaxonomicClassifier)],
name='Train the ' + name + ' classifier',
description='Create a scikit-learn ' + name + ' classifier for reads',
citations=[citations['pedregosa2011scikit']]
)
for name, pipeline in _specific_fitters:
_register_fitter(name, pipeline)
|