File: test_consensus_assignment.py

package info (click to toggle)
q2-feature-classifier 2024.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,532 kB
  • sloc: python: 3,725; makefile: 39; sh: 13
file content (474 lines) | stat: -rw-r--r-- 22,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import pandas as pd
import pandas.testing as pdt

from qiime2.sdk import Artifact
from q2_feature_classifier._skl import _specific_fitters
from q2_feature_classifier._consensus_assignment import (
    _lca_consensus,
    _compute_consensus_annotations,
    _blast6format_df_to_series_of_lists,
    _taxa_to_cumulative_ranks)
from q2_types.feature_data import DNAFASTAFormat
from . import FeatureClassifierTestPluginBase
from qiime2.plugins import feature_classifier as qfc


class SequenceSearchTests(FeatureClassifierTestPluginBase):

    def setUp(self):
        super().setUp()
        self.query = Artifact.import_data(
            'FeatureData[Sequence]', self.get_data_path('query-seqs.fasta'))
        self.ref = Artifact.import_data(
            'FeatureData[Sequence]',
            self.get_data_path('se-dna-sequences.fasta'))

    # The blastdb format is not documented in enough detail to validate
    # so for now we just run together with blastn to validate.
    def test_makeblastdb_and_blast(self):
        db, = qfc.actions.makeblastdb(self.ref)
        print(db)
        result1, = qfc.actions.blast(self.query, blastdb=db)
        result2, = qfc.actions.blast(self.query, self.ref)
        pdt.assert_frame_equal(result1.view(pd.DataFrame),
                               result2.view(pd.DataFrame))
        with self.assertRaisesRegex(ValueError, "Only one.*can be provided"):
            qfc.actions.blast(self.query, reference_reads=self.ref, blastdb=db)
        with self.assertRaisesRegex(ValueError, "Either.*must be provided"):
            qfc.actions.blast(self.query)

    def test_blast(self):
        result, = qfc.actions.blast(
            self.query, self.ref, maxaccepts=3, perc_identity=0.9)
        exp = pd.DataFrame({
            'qseqid': {0: '1111561', 1: '1111561', 2: '1111561', 3: '835097',
                       4: 'junk'},
            'sseqid': {0: '1111561', 1: '574274', 2: '149351', 3: '835097',
                       4: '*'},
            'pident': {0: 100.0, 1: 92.308, 2: 91.781, 3: 100.0, 4: 0.0},
            'length': {0: 75.0, 1: 78.0, 2: 73.0, 3: 80.0, 4: 0.0},
            'mismatch': {0: 0.0, 1: 2.0, 2: 4.0, 3: 0.0, 4: 0.0},
            'gapopen': {0: 0.0, 1: 4.0, 2: 2.0, 3: 0.0, 4: 0.0},
            'qstart': {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 0.0},
            'qend': {0: 75.0, 1: 75.0, 2: 71.0, 3: 80.0, 4: 0.0},
            'sstart': {0: 24.0, 1: 24.0, 2: 24.0, 3: 32.0, 4: 0.0},
            'send': {0: 98.0, 1: 100.0, 2: 96.0, 3: 111.0, 4: 0.0},
            'evalue': {0: 8.35e-36, 1: 2.36e-26, 2: 3.94e-24,
                       3: 1.5000000000000002e-38, 4: 0.0},
            'bitscore': {0: 139.0, 1: 108.0, 2: 100.0, 3: 148.0, 4: 0.0}})
        pdt.assert_frame_equal(result.view(pd.DataFrame), exp)

    def test_blast_no_output_no_hits(self):
        result, = qfc.actions.blast(
            self.query, self.ref, maxaccepts=3, perc_identity=0.9,
            output_no_hits=False)
        exp = pd.DataFrame({
            'qseqid': {0: '1111561', 1: '1111561', 2: '1111561', 3: '835097'},
            'sseqid': {0: '1111561', 1: '574274', 2: '149351', 3: '835097'},
            'pident': {0: 100.0, 1: 92.308, 2: 91.781, 3: 100.0},
            'length': {0: 75.0, 1: 78.0, 2: 73.0, 3: 80.0},
            'mismatch': {0: 0.0, 1: 2.0, 2: 4.0, 3: 0.0},
            'gapopen': {0: 0.0, 1: 4.0, 2: 2.0, 3: 0.0},
            'qstart': {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0},
            'qend': {0: 75.0, 1: 75.0, 2: 71.0, 3: 80.0},
            'sstart': {0: 24.0, 1: 24.0, 2: 24.0, 3: 32.0},
            'send': {0: 98.0, 1: 100.0, 2: 96.0, 3: 111.0},
            'evalue': {0: 8.35e-36, 1: 2.36e-26, 2: 3.94e-24,
                       3: 1.5000000000000002e-38},
            'bitscore': {0: 139.0, 1: 108.0, 2: 100.0, 3: 148.0}})
        pdt.assert_frame_equal(result.view(pd.DataFrame), exp)

    def test_vsearch_global(self):
        result, = qfc.actions.vsearch_global(
            self.query, self.ref, maxaccepts=3, perc_identity=0.9)
        exp = pd.DataFrame({
            'qseqid': {0: '1111561', 1: '835097', 2: 'junk'},
            'sseqid': {0: '1111561', 1: '835097', 2: '*'},
            'pident': {0: 100.0, 1: 100.0, 2: 0.0},
            'length': {0: 75.0, 1: 80.0, 2: 0.0},
            'mismatch': {0: 0.0, 1: 0.0, 2: 0.0},
            'gapopen': {0: 0.0, 1: 0.0, 2: 0.0},
            'qstart': {0: 1.0, 1: 1.0, 2: 0.0},
            'qend': {0: 75.0, 1: 80.0, 2: 0.0},
            'sstart': {0: 1.0, 1: 1.0, 2: 0.0},
            'send': {0: 150.0, 1: 150.0, 2: 0.0},
            'evalue': {0: -1.0, 1: -1.0, 2: -1.0},
            'bitscore': {0: 0.0, 1: 0.0, 2: 0.0}})
        pdt.assert_frame_equal(
            result.view(pd.DataFrame), exp, check_names=False)

    def test_vsearch_global_no_output_no_hits(self):
        result, = qfc.actions.vsearch_global(
            self.query, self.ref, maxaccepts=3, perc_identity=0.9,
            output_no_hits=False)
        exp = pd.DataFrame({
            'qseqid': {0: '1111561', 1: '835097'},
            'sseqid': {0: '1111561', 1: '835097'},
            'pident': {0: 100.0, 1: 100.0},
            'length': {0: 75.0, 1: 80.0},
            'mismatch': {0: 0.0, 1: 0.0},
            'gapopen': {0: 0.0, 1: 0.0},
            'qstart': {0: 1.0, 1: 1.0},
            'qend': {0: 75.0, 1: 80.0},
            'sstart': {0: 1.0, 1: 1.0},
            'send': {0: 150.0, 1: 150.0},
            'evalue': {0: -1.0, 1: -1.0},
            'bitscore': {0: 0.0, 1: 0.0}})
        pdt.assert_frame_equal(
            result.view(pd.DataFrame), exp, check_names=False)

    def test_vsearch_global_permissive(self):
        result, = qfc.actions.vsearch_global(
            self.query, self.ref, maxaccepts=1, perc_identity=0.8,
            query_cov=0.2)
        exp = pd.DataFrame({
            'qseqid': {0: '1111561', 1: '835097', 2: 'junk'},
            'sseqid': {0: '1111561', 1: '835097', 2: '4314518'},
            'pident': {0: 100.0, 1: 100.0, 2: 90.0},
            'length': {0: 75.0, 1: 80.0, 2: 20.0},
            'mismatch': {0: 0.0, 1: 0.0, 2: 2.0},
            'gapopen': {0: 0.0, 1: 0.0, 2: 0.0},
            'qstart': {0: 1.0, 1: 1.0, 2: 1.0},
            'qend': {0: 75.0, 1: 80.0, 2: 100.0},
            'sstart': {0: 1.0, 1: 1.0, 2: 1.0},
            'send': {0: 150.0, 1: 150.0, 2: 95.0},
            'evalue': {0: -1.0, 1: -1.0, 2: -1.0},
            'bitscore': {0: 0.0, 1: 0.0, 2: 0.0}})
        pdt.assert_frame_equal(
            result.view(pd.DataFrame), exp, check_names=False)


# setting up utility test for comparing series below
def series_is_subset(expected, observed):
    # join observed and expected results to compare
    joined = pd.concat([expected, observed], axis=1, join='inner')
    # check that all observed results are at least a substring of expected
    # (this should usually be the case, unless if consensus classification
    # did very badly, e.g., resulting in unclassified)
    compared = joined.apply(lambda x: x[0].startswith(x[1]), axis=1)
    # in the original tests we set a threshold of 50% for subsets... most
    # should be but in some cases misclassification could occur, or dodgy
    # annotations that screw up the LCA. So just check that we have at least
    # as many             TRUE     as                 FALSE.
    return len(compared[compared]) >= len(compared[~compared])


class ConsensusAssignmentsTests(FeatureClassifierTestPluginBase):

    def setUp(self):
        super().setUp()
        self.taxonomy = Artifact.import_data(
            'FeatureData[Taxonomy]', self.get_data_path('taxonomy.tsv'))
        self.reads = Artifact.import_data(
            'FeatureData[Sequence]',
            self.get_data_path('se-dna-sequences.fasta'))
        self.exp = self.taxonomy.view(pd.Series)

    # Make sure blast and vsearch produce expected outputs
    # but there is no "right" taxonomy assignment.
    # TODO: the results should be deterministic, so we should check expected
    # search and/or taxonomy classification outputs.
    def test_classify_consensus_blast(self):
        result, _, = qfc.actions.classify_consensus_blast(
            query=self.reads, reference_reads=self.reads,
            reference_taxonomy=self.taxonomy)
        self.assertTrue(series_is_subset(self.exp, result.view(pd.Series)))

    def test_classify_consensus_vsearch(self):
        result, _, = qfc.actions.classify_consensus_vsearch(
            self.reads, self.reads, self.taxonomy)
        self.assertTrue(series_is_subset(self.exp, result.view(pd.Series)))

    # search_exact with all other exposed params to confirm compatibility
    # in future releases of vsearch
    def test_classify_consensus_vsearch_search_exact(self):
        result, _, = qfc.actions.classify_consensus_vsearch(
            self.reads, self.reads, self.taxonomy, search_exact=True,
            top_hits_only=True, output_no_hits=True, weak_id=0.9, maxhits=10)
        self.assertTrue(series_is_subset(self.exp, result.view(pd.Series)))

    def test_classify_consensus_vsearch_top_hits_only(self):
        result, _, = qfc.actions.classify_consensus_vsearch(
            self.reads, self.reads, self.taxonomy, top_hits_only=True)
        self.assertTrue(series_is_subset(self.exp, result.view(pd.Series)))

    # make sure weak_id and other parameters do not conflict with each other.
    # This test just makes sure the command runs okay with all options.
    # We are not in the business of debugging VSEARCH, but want to have this
    # test as a canary in the coal mine.
    def test_classify_consensus_vsearch_the_works(self):
        result, _, = qfc.actions.classify_consensus_vsearch(
            self.reads, self.reads, self.taxonomy, top_hits_only=True,
            maxhits=1, maxrejects=10, weak_id=0.8, perc_identity=0.99,
            output_no_hits=False)
        self.assertTrue(series_is_subset(self.exp, result.view(pd.Series)))


class HybridClassiferTests(FeatureClassifierTestPluginBase):

    def setUp(self):
        super().setUp()
        taxonomy = Artifact.import_data(
            'FeatureData[Taxonomy]', self.get_data_path('taxonomy.tsv'))
        self.taxonomy = taxonomy.view(pd.Series)
        self.taxartifact = taxonomy
        # TODO: use `Artifact.import_data` here once we have a transformer
        # for DNASequencesDirectoryFormat -> DNAFASTAFormat
        reads_fp = self.get_data_path('se-dna-sequences.fasta')
        reads = DNAFASTAFormat(reads_fp, mode='r')
        self.reads = Artifact.import_data('FeatureData[Sequence]', reads)

        fitter = getattr(qfc.methods,
                         'fit_classifier_' + _specific_fitters[0][0])
        self.classifier = fitter(self.reads, self.taxartifact).classifier

        self.query = Artifact.import_data('FeatureData[Sequence]', pd.Series(
            {'A': 'GCCTAACACATGCAAGTCGAACGGCAGCGGGGGAAAGCTTGCTTTCCTGCCGGCGA',
             'B': 'TAACACATGCAAGTCAACGATGCTTATGTAGCAATATGTAAGTAGAGTGGCGCACG',
             'C': 'ATACATGCAAGTCGTACGGTATTCCGGTTTCGGCCGGGAGAGAGTGGCGGATGGGT',
             'D': 'GACGAACGCTGGCGACGTGCTTAACACATGCAAGTCGTGCGAGGACGGGCGGTGCT'
                  'TGCACTGCTCGAGCCGAGCGGCGGACGGGTGAGTAACACGTGAGCAACCTATCTCC'
                  'GTGCGGGGGACAACCCGGGGAAACCCGGGCTAATACCG'}))

    def test_classify_hybrid_vsearch_sklearn_all_exact_match(self):

        result, = qfc.actions.classify_hybrid_vsearch_sklearn(
            query=self.reads, reference_reads=self.reads,
            reference_taxonomy=self.taxartifact, classifier=self.classifier,
            prefilter=False)
        result, = qfc.actions.classify_hybrid_vsearch_sklearn(
            query=self.reads, reference_reads=self.reads,
            reference_taxonomy=self.taxartifact, classifier=self.classifier)
        result = result.view(pd.DataFrame)
        res = result.Taxon.to_dict()
        tax = self.taxonomy.to_dict()
        right = 0.
        for taxon in res:
            right += tax[taxon].startswith(res[taxon])
        self.assertGreater(right/len(res), 0.5)

    def test_classify_hybrid_vsearch_sklearn_mixed_query(self):

        result, = qfc.actions.classify_hybrid_vsearch_sklearn(
            query=self.query, reference_reads=self.reads,
            reference_taxonomy=self.taxartifact, classifier=self.classifier,
            prefilter=True, read_orientation='same', randseed=1001)
        result = result.view(pd.DataFrame)
        obs = result.Taxon.to_dict()
        exp = {'A': 'k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; '
                    'o__Legionellales; f__; g__; s__',
               'B': 'k__Bacteria; p__Chlorobi; c__; o__; f__; g__; s__',
               'C': 'k__Bacteria; p__Bacteroidetes; c__Cytophagia; '
                    'o__Cytophagales; f__Cyclobacteriaceae; g__; s__',
               'D': 'k__Bacteria; p__Gemmatimonadetes; c__Gemm-5; o__; f__; '
                    'g__; s__'}
        self.assertDictEqual(obs, exp)


class ImportBlastAssignmentTests(FeatureClassifierTestPluginBase):

    def setUp(self):
        super().setUp()
        result = Artifact.import_data(
            'FeatureData[BLAST6]', self.get_data_path('blast6-format.tsv'))
        self.result = result.view(pd.DataFrame)
        taxonomy = Artifact.import_data(
            'FeatureData[Taxonomy]', self.get_data_path('taxonomy.tsv'))
        self.taxonomy = taxonomy.view(pd.Series)

    def test_blast6format_df_to_series_of_lists(self):
        # and add in a query without any hits, to check that it is parsed
        self.result.loc[3] = ['junk', '*'] + [''] * 10
        obs = _blast6format_df_to_series_of_lists(self.result, self.taxonomy)
        exp = pd.Series(
            {'1111561': [
                'k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; '
                'o__Legionellales; f__; g__; s__',
                'k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; '
                'o__Legionellales; f__Coxiellaceae; g__; s__'],
             '835097': [
                'k__Bacteria; p__Chloroflexi; c__SAR202; o__; f__; g__; s__'],
             'junk': ['Unassigned']},
            name='sseqid')
        exp.index.name = 'qseqid'
        pdt.assert_series_equal(exp, obs)

    # should fail when hit IDs are missing from reference taxonomy
    # in this case 1128818 is missing
    def test_blast6format_df_to_series_of_lists_fail_on_missing_ids(self):
        # add a bad idea
        self.result.loc[3] = ['junk', 'lost-id'] + [''] * 10
        with self.assertRaisesRegex(KeyError, "results do not match.*lost-id"):
            _blast6format_df_to_series_of_lists(self.result, self.taxonomy)


class ConsensusAnnotationTests(FeatureClassifierTestPluginBase):

    def test_taxa_to_cumulative_ranks(self):
        taxa = ['a;b;c', 'a;b;d', 'a;g;g']
        exp = [['a', 'a;b', 'a;b;c'], ['a', 'a;b', 'a;b;d'],
               ['a', 'a;g', 'a;g;g']]
        self.assertEqual(_taxa_to_cumulative_ranks(taxa), exp)

    def test_taxa_to_cumulative_ranks_with_uneven_ranks(self):
        taxa = ['a;b;c', 'a;b;d', 'a;g;g;somemoregarbage']
        exp = [['a', 'a;b', 'a;b;c'], ['a', 'a;b', 'a;b;d'],
               ['a', 'a;g', 'a;g;g', 'a;g;g;somemoregarbage']]
        self.assertEqual(_taxa_to_cumulative_ranks(taxa), exp)

    def test_taxa_to_cumulative_ranks_with_one_entry(self):
        taxa = ['a;b;c']
        exp = [['a', 'a;b', 'a;b;c']]
        self.assertEqual(_taxa_to_cumulative_ranks(taxa), exp)

    def test_taxa_to_cumulative_ranks_with_empty_list(self):
        taxa = ['']
        exp = [['']]
        self.assertEqual(_taxa_to_cumulative_ranks(taxa), exp)

    def test_varied_min_fraction(self):
        in_ = [['Ab', 'Ab;Bc', 'Ab;Bc;De'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Jk']]

        actual = _lca_consensus(in_, 0.51, "Unassigned")
        expected = ('Ab;Bc;Fg', 0.667)
        self.assertEqual(actual, expected)

        # increased min_consensus_fraction yields decreased specificity
        actual = _lca_consensus(in_, 0.99, "Unassigned")
        expected = ('Ab;Bc', 1.0)
        self.assertEqual(actual, expected)

    def test_single_annotation(self):
        in_ = [['Ab', 'Ab;Bc', 'Ab;Bc;De']]

        actual = _lca_consensus(in_, 1.0, "Unassigned")
        expected = ('Ab;Bc;De', 1.0)
        self.assertEqual(actual, expected)

        actual = _lca_consensus(in_, 0.501, "Unassigned")
        expected = ('Ab;Bc;De', 1.0)
        self.assertEqual(actual, expected)

    def test_no_consensus(self):
        in_ = [['Ab', 'Ab;Bc', 'Ab;Bc;De'],
               ['Cd', 'Cd;Bc', 'Cd;Bc;Fg', 'Cd;Bc;Fg;Hi'],
               ['Ef', 'Ef;Bc', 'Ef;Bc;Fg', 'Ef;Bc;Fg;Jk']]

        actual = _lca_consensus(in_, 0.51, "Unassigned")
        expected = ('Unassigned', 0.)
        self.assertEqual(actual, expected)

        actual = _lca_consensus(
                    in_, 0.51, unassignable_label="Hello world!")
        expected = ('Hello world!', 0.)
        self.assertEqual(actual, expected)

    def test_overlapping_names(self):
        # here the 3rd level is different, but the 4th level is the same
        # across the three assignments. this can happen in practice if
        # three different genera are assigned, and under each there is
        # an unnamed species
        # (e.g., f__x;g__A;s__, f__x;g__B;s__, f__x;g__B;s__)
        # in this case, the assignment should be f__x.
        in_ = [['Ab', 'Ab;Bc', 'Ab;Bc;De', 'Ab;Bc;De;Jk'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Jk'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Hi', 'Ab;Bc;Hi;Jk']]
        actual = _lca_consensus(in_, 0.51, "Unassigned")
        expected = ('Ab;Bc', 1.)
        self.assertEqual(actual, expected)

        # here the third level is the same in 4/5 of the
        # assignments, but one of them (z, y, c) refers to a
        # different taxa since the higher levels are different.
        # the consensus value should be 3/5, not 4/5, to
        # reflect that.
        in_ = [['a', 'a;b', 'a;b;c'],
               ['a', 'a;d', 'a;d;e'],
               ['a', 'a;b', 'a;b;c'],
               ['a', 'a;b', 'a;b;c'],
               ['z', 'z;y', 'z;y;c']]
        actual = _lca_consensus(in_, 0.51, "Unassigned")
        expected = ('a;b;c', 0.6)
        self.assertEqual(actual, expected)

    def test_adjusts_resolution(self):
        # max result depth is that of shallowest assignment
        # Reading this test now, I am not entirely sure that this is how
        # such cases should be handled. Technically such a case should not
        # arise (as the dbs should have even ranks) so we can leave this for
        # now, and it is arguable, but in this case I think that majority
        # should rule. We use `zip` but might want to consider `zip_longest`.
        in_ = [['Ab', 'Ab;Bc', 'Ab;Bc;Fg'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi', 'Ab;Bc;Fg;Hi;Jk']]

        actual = _lca_consensus(in_, 0.51, "Unassigned")
        expected = ('Ab;Bc;Fg', 1.0)
        self.assertEqual(actual, expected)

        in_ = [['Ab', 'Ab;Bc', 'Ab;Bc;Fg'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi', 'Ab;Bc;Fg;Hi;Jk'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi', 'Ab;Bc;Fg;Hi;Jk'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi', 'Ab;Bc;Fg;Hi;Jk'],
               ['Ab', 'Ab;Bc', 'Ab;Bc;Fg', 'Ab;Bc;Fg;Hi', 'Ab;Bc;Fg;Hi;Jk']]

        actual = _lca_consensus(in_, 0.51, "Unassigned")
        expected = ('Ab;Bc;Fg', 1.0)
        self.assertEqual(actual, expected)


# More edge cases are tested for the internals above, so the tests here are
# made slim to just test the overarching functions.
class ConsensusAnnotationsTests(FeatureClassifierTestPluginBase):

    def test_varied_fraction(self):

        in_ = pd.Series({'q1': ['A;B;C;D', 'A;B;C;E'],
                         'q2': ['A;H;I;J', 'A;H;K;L;M', 'A;H;I;J'],
                         'q3': ['A', 'A', 'B'],
                         'q4': ['A', 'B'],
                         'q5': []})
        expected = pd.DataFrame({
            'Taxon': {'q1': 'A;B;C', 'q2': 'A;H;I;J', 'q3': 'A',
                      'q4': 'Unassigned', 'q5': 'Unassigned'},
            'Consensus': {
                'q1': 1.0, 'q2': 0.667, 'q3': 0.667, 'q4': 0.0, 'q5': 0.0}})
        actual = _compute_consensus_annotations(in_, 0.51, 'Unassigned')
        pdt.assert_frame_equal(actual, expected, check_names=False)

        expected = pd.DataFrame({
            'Taxon': {'q1': 'A;B;C', 'q2': 'A;H', 'q3': 'Unassigned',
                      'q4': 'Unassigned', 'q5': 'Unassigned'},
            'Consensus': {
                'q1': 1.0, 'q2': 1.0, 'q3': 0.0, 'q4': 0.0, 'q5': 0.0}})
        actual = _compute_consensus_annotations(in_, 0.99, 'Unassigned')
        pdt.assert_frame_equal(actual, expected, check_names=False)

    def test_find_consensus_annotation(self):

        result = Artifact.import_data(
            'FeatureData[BLAST6]', self.get_data_path('blast6-format.tsv'))
        taxonomy = Artifact.import_data(
            'FeatureData[Taxonomy]', self.get_data_path('taxonomy.tsv'))
        consensus, = qfc.actions.find_consensus_annotation(result, taxonomy)
        obs = consensus.view(pd.DataFrame)
        exp = pd.DataFrame(
            {'Taxon': {
                '1111561': 'k__Bacteria; p__Proteobacteria; '
                           'c__Gammaproteobacteria; o__Legionellales',
                '835097': 'k__Bacteria; p__Chloroflexi; c__SAR202; o__; f__; '
                          'g__; s__'},
             'Consensus': {'1111561': '1.0', '835097': '1.0'}})
        pdt.assert_frame_equal(exp, obs, check_names=False)