1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2022, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import numpy as np
from biom import Table
import qiime2
from qiime2 import Artifact
rep_seqs_1_url = (f'https://data.qiime2.org/{qiime2.__release__}/'
'tutorials/metadata/rep-seqs.qza')
rep_seqs_2_url = (f'https://data.qiime2.org/{qiime2.__release__}/'
'tutorials/phylogeny/rep-seqs.qza')
taxonomy_1_url = ('https://docs.qiime2.org/jupyterbooks/cancer-microbiome-'
'intervention-tutorial/data/030-tutorial-downstream/020-'
'taxonomy/taxonomy.qza')
moving_pics_ft_url = (f'https://data.qiime2.org/{qiime2.__release__}/'
'tutorials/filtering/table.qza')
moving_pics_md_url = (f'https://data.qiime2.org/{qiime2.__release__}/'
'tutorials/moving-pictures/sample_metadata.tsv')
rep_seqs_dada2_url = 'https://data.qiime2.org/usage-examples/' \
'moving-pictures/rep-seqs-dada2.qza'
rep_seqs_deblur_url = 'https://data.qiime2.org/usage-examples/' \
'moving-pictures/rep-seqs-deblur.qza'
def ft1_factory():
return Artifact.import_data(
'FeatureTable[Frequency]',
Table(np.array([[0, 1, 3], [1, 1, 2]]),
['O1', 'O2'],
['S1', 'S2', 'S3']))
def ft2_factory():
return Artifact.import_data(
'FeatureTable[Frequency]',
Table(np.array([[0, 2, 6], [2, 2, 4]]),
['O1', 'O3'],
['S4', 'S5', 'S6']))
def ft3_factory():
return Artifact.import_data(
'FeatureTable[Frequency]',
Table(np.array([[0, 4, 9], [4, 4, 8]]),
['O1', 'O4'],
['S7', 'S8', 'S9']))
def feature_table_merge_two_tables(use):
feature_table1 = use.init_artifact('feature_table1', ft1_factory)
feature_table2 = use.init_artifact('feature_table2', ft2_factory)
merged_table, = use.action(
use.UsageAction(plugin_id='feature_table',
action_id='merge'),
use.UsageInputs(tables=[feature_table1, feature_table2]),
use.UsageOutputNames(merged_table='merged_table'),
)
merged_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_merge_three_tables(use):
feature_table1 = use.init_artifact('feature_table1', ft1_factory)
feature_table2 = use.init_artifact('feature_table2', ft2_factory)
feature_table3 = use.init_artifact('feature_table3', ft3_factory)
merged_table, = use.action(
use.UsageAction(plugin_id='feature_table',
action_id='merge'),
use.UsageInputs(
tables=[feature_table1, feature_table2, feature_table3],
overlap_method='sum'
),
use.UsageOutputNames(merged_table='merged_table'),
)
merged_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_merge_taxa(use):
# TODO: Would probably be better to have two different artifacts here
tax1 = use.init_artifact_from_url('tax1', taxonomy_1_url)
tax2 = \
use.init_artifact_from_url('tax2', taxonomy_1_url)
merged_data, = use.action(
use.UsageAction('feature_table', 'merge_taxa'),
use.UsageInputs(
data=[tax1, tax2]
),
use.UsageOutputNames(
merged_data='merged_data'
)
)
merged_data.assert_output_type('FeatureData[Taxonomy]')
def feature_table_merge_seqs(use):
dada2_seqs = use.init_artifact_from_url('seqs1', rep_seqs_dada2_url)
deblur_seqs = use.init_artifact_from_url('seqs2', rep_seqs_deblur_url)
merged_data, = use.action(
use.UsageAction('feature_table', 'merge_seqs'),
use.UsageInputs(
data=[dada2_seqs, deblur_seqs]
),
use.UsageOutputNames(
merged_data='merged_data'
)
)
merged_data.assert_output_type('FeatureData[Sequence]')
def feature_table_filter_samples_min_features(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(table=feature_table,
min_features=10),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_samples_min_frequency(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(table=feature_table,
min_frequency=1500),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_samples_to_subject1(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
sample_metadata = use.init_metadata_from_url(
'sample_metadata', moving_pics_md_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(table=feature_table, metadata=sample_metadata,
where='[subject]="subject-1"'),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_samples_to_skin(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
sample_metadata = use.init_metadata_from_url(
'sample_metadata', moving_pics_md_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(table=feature_table, metadata=sample_metadata,
where='[body-site] IN ("left palm", "right palm")'),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_samples_to_subject1_gut(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
sample_metadata = use.init_metadata_from_url(
'sample_metadata', moving_pics_md_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(table=feature_table, metadata=sample_metadata,
where=r'[subject]="subject-1" AND [body-site]="gut"'),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_samples_to_gut_or_abx(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
sample_metadata = use.init_metadata_from_url(
'sample_metadata', moving_pics_md_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(
table=feature_table, metadata=sample_metadata,
where=r'[body-site]="gut" OR [reported-antibiotic-usage]="Yes"'),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_samples_to_subject1_not_gut(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
sample_metadata = use.init_metadata_from_url(
'sample_metadata', moving_pics_md_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table', action_id='filter_samples'),
use.UsageInputs(
table=feature_table, metadata=sample_metadata,
where=r'[subject]="subject-1" AND NOT [body-site]="gut"'),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_features_min_samples(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table',
action_id='filter_features'),
use.UsageInputs(table=feature_table,
min_samples=2),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_filter_features_conditionally(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
use.comment("Retain only features with at least 1%% abundance in at "
"least 34%% of samples.")
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table',
action_id='filter_features_conditionally'),
use.UsageInputs(table=feature_table,
abundance=0.01,
prevalence=0.34),
use.UsageOutputNames(filtered_table='filtered_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_group_samples(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
metadata = use.init_metadata_from_url(
'sample_metadata', moving_pics_md_url,
)
metadata_col = use.get_metadata_column('body-site', 'body-site', metadata)
use.comment("Combine samples from the same body-site into single sample. "
"Feature frequencies will be the median across the samples "
"being combined, rounded up to the nearest whole number.")
filtered_table, = use.action(
use.UsageAction(plugin_id='feature_table',
action_id='group'),
use.UsageInputs(table=feature_table,
metadata=metadata_col,
mode='median-ceiling',
axis='sample'),
use.UsageOutputNames(grouped_table='body_site_table')
)
filtered_table.assert_output_type('FeatureTable[Frequency]')
def feature_table_summarize(use):
feature_table = use.init_artifact_from_url(
'feature_table', moving_pics_ft_url
)
viz, = use.action(
use.UsageAction('feature_table', 'summarize'),
use.UsageInputs(table=feature_table),
use.UsageOutputNames(visualization='table')
)
viz.assert_output_type('Visualization')
def feature_table_tabulate_seqs(use):
rep_seqs = use.init_artifact_from_url(
'rep_seqs', rep_seqs_1_url
)
viz, = use.action(
use.UsageAction('feature_table', 'tabulate_seqs'),
use.UsageInputs(data=rep_seqs),
use.UsageOutputNames(visualization='rep-seqs')
)
viz.assert_output_type('Visualization')
|