1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2022, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import os.path
import pkg_resources
import q2templates
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import qiime2
TEMPLATES = pkg_resources.resource_filename('q2_feature_table._heatmap',
'assets')
heatmap_choices = {
'metric': {'braycurtis', 'canberra', 'chebyshev', 'cityblock',
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski',
'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener',
'sokalsneath', 'sqeuclidean', 'yule'},
'method': {'single', 'complete', 'average', 'weighted', 'centroid',
'median', 'ward'},
'cluster': {'samples', 'features', 'both', 'none'},
'color_scheme': {'Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG',
'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap',
'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r',
'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd',
'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r',
'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2',
'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn',
'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r',
'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy',
'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r',
'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r',
'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral',
'Spectral_r', 'Vega10', 'Vega10_r', 'Vega20', 'Vega20_r',
'Vega20b', 'Vega20b_r', 'Vega20c', 'Vega20c_r', 'Wistia',
'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r',
'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot',
'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r',
'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cool',
'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r',
'cubehelix', 'cubehelix_r', 'flag', 'flag_r',
'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r',
'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r',
'gist_rainbow', 'gist_rainbow_r', 'gist_stern',
'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot',
'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r',
'hot', 'hot_r', 'hsv', 'hsv_r', 'icefire', 'icefire_r',
'inferno', 'inferno_r', 'jet', 'jet_r', 'magma',
'magma_r', 'mako', 'mako_r', 'nipy_spectral',
'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r',
'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow',
'rainbow_r', 'rocket', 'rocket_r', 'seismic', 'seismic_r',
'spectral', 'spectral_r', 'spring', 'spring_r', 'summer',
'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r',
'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain',
'terrain_r', 'viridis', 'viridis_r', 'vlag', 'vlag_r',
'winter', 'winter_r', 'cividis', 'cividis_r'}
}
_clustering_map = {'both': {'col_cluster': True, 'row_cluster': True},
'samples': {'col_cluster': False, 'row_cluster': True},
'features': {'col_cluster': True, 'row_cluster': False},
'none': {'col_cluster': False, 'row_cluster': False}}
def _munge_sample_metadata(metadata, table, cluster):
metadata = metadata.filter_ids(table.index)
column_name = metadata.name
metadata_df = metadata.to_dataframe()
metadata_df = metadata_df.fillna('[No Value]')
metadata_df['merged-id'] = metadata_df[column_name].str.cat(
metadata_df.index, sep=' | ')
# Inner join here because we have already validated that all sample IDs in
# the table are present in the metadata, and the metadata has been filtered
# to only include the table's IDs.
table = table.join(metadata_df, how='inner')
# It doesn't make sense to sort the samples if clustering is enabled on
# the sample axis (e.g. `both` or `samples`).
if cluster == 'features':
table.sort_values(column_name, axis=0, ascending=True, inplace=True)
table.set_index('merged-id', inplace=True)
table.index.name = '%s | %s' % (column_name, metadata_df.index.name)
table.drop([column_name], axis=1, inplace=True)
return table
def _munge_feature_metadata(metadata, table, cluster):
metadata = metadata.filter_ids(table.columns)
column_name = metadata.name
metadata_df = metadata.to_dataframe()
# replace feature IDs with feature metadata annotations
table.columns = metadata_df.reindex(table.columns)[column_name].values
if cluster == 'samples':
table = table.sort_index(axis=1)
return table
def heatmap(output_dir, table: pd.DataFrame,
sample_metadata: qiime2.CategoricalMetadataColumn = None,
feature_metadata: qiime2.CategoricalMetadataColumn = None,
normalize: bool = True, title: str = None,
metric: str = 'euclidean', method: str = 'average',
cluster: str = 'both', color_scheme: str = 'rocket') -> None:
if table.empty:
raise ValueError('Cannot visualize an empty table.')
if sample_metadata is not None:
table = _munge_sample_metadata(sample_metadata, table, cluster)
# relabel feature table feature IDs with feature metadata column values
if feature_metadata is not None:
table = _munge_feature_metadata(feature_metadata, table, cluster)
cbar_label = 'frequency'
if normalize:
table = table.apply(lambda x: np.log10(x + 1))
cbar_label = 'log10 frequency'
# Hard-coded values for reasonable plots
scaletron, labelsize, dpi = 50, 8, 100
sns.set(rc={'xtick.labelsize': labelsize, 'ytick.labelsize': labelsize,
'figure.dpi': dpi})
width, height = table.shape[1] / scaletron, table.shape[0] / scaletron
heatmap_plot = sns.clustermap(table, method=method, metric=metric,
**_clustering_map[cluster],
cmap=color_scheme,
xticklabels=True, yticklabels=True,
cbar_kws={'label': cbar_label})
if title is not None:
heatmap_plot.fig.suptitle(title)
hm = heatmap_plot.ax_heatmap.get_position()
cbar = heatmap_plot.cax.get_position()
row = heatmap_plot.ax_row_dendrogram.get_position()
col = heatmap_plot.ax_col_dendrogram.get_position()
# Resize the plot to set cell aspect-ratio to square
heatmap_plot.ax_heatmap.set_position([hm.x0, hm.y0, width, height])
heatmap_plot.cax.set_position([cbar.x0, hm.y0 + height, cbar.width,
cbar.height])
heatmap_plot.ax_row_dendrogram.set_position([row.x0, row.y0, row.width,
height])
heatmap_plot.ax_col_dendrogram.set_position([col.x0, hm.y0 + height, width,
col.height])
# https://stackoverflow.com/a/34697479/3776794
plt.setp(heatmap_plot.ax_heatmap.xaxis.get_majorticklabels(), rotation=90)
plt.setp(heatmap_plot.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
for ext in ['png', 'svg']:
img_fp = os.path.join(output_dir, 'feature-table-heatmap.%s' % ext)
heatmap_plot.savefig(img_fp)
index_fp = os.path.join(TEMPLATES, 'index.html')
q2templates.render(index_fp, output_dir, context={'normalize': normalize})
|