1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2022, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import os
from unittest import TestCase, main
import tempfile
import skbio
import biom
import pandas as pd
import numpy as np
import qiime2
from q2_types.feature_data import DNAIterator
import csv
from q2_feature_table import tabulate_seqs, summarize
from q2_feature_table._summarize._visualizer import _compute_descriptive_stats
from q2_feature_table._summarize._visualizer import _frequencies
from q2_feature_table._summarize._vega_spec import vega_spec
class TabulateSeqsTests(TestCase):
def test_basic(self):
seqs = DNAIterator(skbio.DNA(a, metadata=b) for a, b in (
('ACGT', {'id': 'seq1'}),
('AAAA', {'id': 'seq2'})))
with tempfile.TemporaryDirectory() as output_dir:
tabulate_seqs(output_dir, seqs)
expected_fp = os.path.join(output_dir, 'index.html')
self.assertTrue(os.path.exists(expected_fp))
with open(expected_fp) as fh:
file_text = fh.read()
self.assertTrue('ACGT</a>' in file_text)
self.assertTrue('<td>4</td>' in file_text)
self.assertTrue('<td>seq2</td>' in file_text)
def test_descriptive_stats(self):
seq_lengths = [2, 2, 5, 6, 10]
exp_stats = {
'mean': 5.0, 'min': 2,
'seven_num_summ_values': [2.0, 2.0, 2.0, 5.0, 6.0, 8.56, 9.68],
'max': 10, 'count': 5, 'range': 8}
rendered_stats = _compute_descriptive_stats(seq_lengths)
self.assertEqual(exp_stats['count'], rendered_stats['count'])
self.assertEqual(exp_stats['min'], rendered_stats['min'])
self.assertEqual(exp_stats['max'], rendered_stats['max'])
self.assertEqual(exp_stats['range'], rendered_stats['range'])
self.assertAlmostEqual(exp_stats['mean'], rendered_stats['mean'])
for expected, rendered in zip(exp_stats['seven_num_summ_values'],
rendered_stats['seven_num_summ_values']):
self.assertAlmostEqual(expected, rendered)
def test_lengths_identical(self):
seq_lengths = [5, 5, 5, 5, 5]
exp_stats = {
'mean': 5.0, 'min': 5,
'seven_num_summ_values': [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
'max': 5, 'count': 5, 'range': 0}
rendered_stats = _compute_descriptive_stats(seq_lengths)
self.assertEqual(exp_stats['count'], rendered_stats['count'])
self.assertEqual(exp_stats['min'], rendered_stats['min'])
self.assertEqual(exp_stats['max'], rendered_stats['max'])
self.assertEqual(exp_stats['range'], rendered_stats['range'])
self.assertAlmostEqual(exp_stats['mean'], rendered_stats['mean'])
for expected, rendered in zip(exp_stats['seven_num_summ_values'],
rendered_stats['seven_num_summ_values']):
self.assertAlmostEqual(expected, rendered)
def test_no_sequences(self):
seq_lengths = []
with self.assertRaisesRegex(ValueError, 'No values provided.'):
_compute_descriptive_stats(seq_lengths)
def test_descriptive_stats_integration(self):
seqs = DNAIterator(skbio.DNA(a, metadata=b)for a, b in (
('A', {'id': 'seq01'}),
('AA', {'id': 'seq02'}),
('AAA', {'id': 'seq03'}),
('AAAA', {'id': 'seq04'}),
('AAAA', {'id': 'seq05'}),
('AAA', {'id': 'seq06'}),
('AA', {'id': 'seq07'}),
('AAAAAAAAAA', {'id': 'seq08'})))
with tempfile.TemporaryDirectory() as output_dir:
tabulate_seqs(output_dir, seqs)
expected_fp = os.path.join(output_dir, 'index.html')
# all expected values are unique. If they all render in index.html, our
# function likely worked as expected.
with open(expected_fp) as fh:
file_text = fh.read()
self.assertTrue('<td>8</td>' in file_text)
self.assertTrue('<td>1</td>' in file_text)
self.assertTrue('<td>10</td>' in file_text)
self.assertTrue('<td>3.62</td>' in file_text)
self.assertTrue('<td>9</td>' in file_text)
self.assertTrue('<td>1</td>' in file_text)
self.assertTrue('<td>1</td>' in file_text)
self.assertTrue('<td>2</td>' in file_text)
self.assertTrue('<td>3</td>' in file_text)
self.assertTrue('<td>4</td>' in file_text)
self.assertTrue('<td>6</td>' in file_text)
self.assertTrue('<td>9</td>' in file_text)
def test_tsv_builder(self):
seqs = DNAIterator(skbio.DNA(a, metadata=b)for a, b in (
('A', {'id': 'seq01'}),
('AA', {'id': 'seq02'}),
('AAA', {'id': 'seq03'}),
('AAAA', {'id': 'seq04'}),
('AAAA', {'id': 'seq05'}),
('AAA', {'id': 'seq06'}),
('AA', {'id': 'seq07'}),
('AAAAAAAAAA', {'id': 'seq08'})))
# Do the files exist?
with tempfile.TemporaryDirectory() as output_dir:
tabulate_seqs(output_dir, seqs)
expected_stats_fp = os.path.join(
output_dir, 'descriptive_stats.tsv')
expected_summary_fp = os.path.join(
output_dir, 'seven_number_summary.tsv')
self.assertTrue(os.path.exists(expected_stats_fp))
self.assertTrue(os.path.exists(expected_summary_fp))
# Was data written to the files?
with open(expected_stats_fp) as stats_tsv:
tsv_reader = csv.reader(stats_tsv, dialect="excel-tab")
tsv_text = []
for row in tsv_reader:
tsv_text.append(row)
self.assertEqual(['Statistic', 'Value'], tsv_text[0])
self.assertEqual(['count', '8'], tsv_text[1])
with open(expected_summary_fp) as summ_tsv:
tsv_reader = csv.reader(summ_tsv, dialect="excel-tab")
tsv_text = []
for row in tsv_reader:
tsv_text.append(row)
self.assertEqual(['Quantile', 'Value'], tsv_text[0])
self.assertEqual(['0.02', '1.14'], tsv_text[1])
# Does link html generate correctly?
expected_index_fp = os.path.join(output_dir, 'index.html')
with open(expected_index_fp) as fh:
self.assertTrue('href="descriptive_stats.tsv"' in fh.read())
with open(expected_index_fp) as fh:
self.assertTrue(
'href="seven_number_summary.tsv"' in fh.read())
class SummarizeTests(TestCase):
def test_basic(self):
table = biom.Table(np.array([[0, 1, 3],
[1, 1, 2],
[400, 450, 500],
[1000, 10000, 100000],
[52, 42, 99]]),
['O1', 'O2', '03', '04', 'O5'],
['S1', 'S2', 'S3'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table)
index_fp = os.path.join(output_dir, 'index.html')
self.assertTrue(os.path.exists(index_fp))
feature_freq_fp = os.path.join(output_dir,
'feature-frequency-detail.csv')
self.assertTrue(os.path.exists(feature_freq_fp))
self.assertTrue('O1,4' in open(feature_freq_fp).read())
sample_freq_fp = os.path.join(output_dir,
'sample-frequency-detail.csv')
self.assertTrue(os.path.exists(sample_freq_fp))
self.assertTrue('S1,1453' in open(sample_freq_fp).read())
def test_frequency_ranges_are_zero(self):
table = biom.Table(np.array([[25, 25, 25], [25, 25, 25]]),
['O1', 'O2'],
['S1', 'S2', 'S3'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table)
index_fp = os.path.join(output_dir, 'index.html')
self.assertTrue(os.path.exists(index_fp))
feature_freq_fp = os.path.join(output_dir,
'feature-frequency-detail.csv')
self.assertTrue(os.path.exists(feature_freq_fp))
self.assertTrue('O1,75' in open(feature_freq_fp).read())
sample_freq_fp = os.path.join(output_dir,
'sample-frequency-detail.csv')
self.assertTrue(os.path.exists(sample_freq_fp))
self.assertTrue('S1,50' in open(sample_freq_fp).read())
def test_one_sample(self):
sample_frequencies_pdf_fn = 'sample-frequencies.pdf'
# sample-frequencies.pdf should not be written when there is only
# one sample...
table = biom.Table(np.array([[0], [1]]),
['O1', 'O2'],
['S1'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table)
sample_frequencies_pdf_fp = \
os.path.join(output_dir, sample_frequencies_pdf_fn)
self.assertFalse(os.path.exists(sample_frequencies_pdf_fp))
# but it should be written when there is more than one sample
table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
['O1', 'O2'],
['S1', 'S2', 'S3'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table)
sample_frequencies_pdf_fp = \
os.path.join(output_dir, sample_frequencies_pdf_fn)
self.assertTrue(os.path.exists(sample_frequencies_pdf_fp))
def test_one_feature(self):
feature_frequencies_pdf_fn = 'feature-frequencies.pdf'
# feature-frequencies.pdf should not be written when there is only
# one feature...
table = biom.Table(np.array([[0, 4]]),
['O1'],
['S1', 'S2'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table)
feature_frequencies_pdf_fp = \
os.path.join(output_dir, feature_frequencies_pdf_fn)
self.assertFalse(os.path.exists(feature_frequencies_pdf_fp))
# but it should be written when there is more than one feature
table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
['O1', 'O2'],
['S1', 'S2', 'S3'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table)
feature_frequencies_pdf_fp = \
os.path.join(output_dir, feature_frequencies_pdf_fn)
self.assertTrue(os.path.exists(feature_frequencies_pdf_fp))
def test_w_sample_metadata(self):
df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'],
'SampleType': ['gut', 'tongue', 'gut']},
index=pd.Index(['S1', 'S2', 'S3'], name='id'))
metadata = qiime2.Metadata(df)
table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
['O1', 'O2'],
['S1', 'S2', 'S3'])
with tempfile.TemporaryDirectory() as output_dir:
summarize(output_dir, table, metadata)
index_fp = os.path.join(output_dir, 'index.html')
self.assertTrue(os.path.exists(index_fp))
feature_freq_fp = os.path.join(output_dir,
'feature-frequency-detail.csv')
self.assertTrue(os.path.exists(feature_freq_fp))
self.assertTrue('O1,4' in open(feature_freq_fp).read())
sample_freq_fp = os.path.join(output_dir,
'sample-frequency-detail.csv')
self.assertTrue(os.path.exists(sample_freq_fp))
self.assertTrue('S1,1' in open(sample_freq_fp).read())
def test_vega_spec_data(self):
# test if metadata is converted correctly to vega compatible JSON
df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'],
'SampleType': ['gut', 'tongue', 'gut']},
index=pd.Index(['S1', 'S2', 'S3'], name='id'))
metadata = qiime2.Metadata(df)
table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
['O1', 'O2'],
['S1', 'S2', 'S3'])
sample_frequencies = _frequencies(table, axis='sample')
spec = vega_spec(metadata, sample_frequencies)
self.assertTrue([{'id': 'S1', 'metadata': {'Subject': 'subject-1',
'SampleType': 'gut'}, 'frequency': 1.0},
{'id': 'S2', 'metadata': {'Subject': 'subject-1',
'SampleType': 'tongue'}, 'frequency': 2.0},
{'id': 'S3', 'metadata': {'Subject': 'subject-2',
'SampleType': 'gut'}, 'frequency': 5.0}],
spec['data'][0]['values'])
def test_vega_spec_nandling(self):
df = pd.DataFrame({'a': [0.5, float('nan')]})
df.index = df.index.map(str)
df.index.name = 'id'
md = qiime2.Metadata(df)
sample_freqs = pd.Series([10, 50])
sample_freqs.index = sample_freqs.index.map(str)
spec = vega_spec(md, sample_freqs)
exp = [{'frequency': 10, 'id': '0', 'metadata': {'a': 0.5}},
{'frequency': 50, 'id': '1', 'metadata': {'a': None}}]
self.assertEqual(spec['data'][0]['values'], exp)
if __name__ == "__main__":
main()
|