File: test_summarize.py

package info (click to toggle)
q2-feature-table 2022.11.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,576 kB
  • sloc: javascript: 34,249; python: 5,605; makefile: 35; sh: 25
file content (319 lines) | stat: -rw-r--r-- 14,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# ----------------------------------------------------------------------------
# Copyright (c) 2016-2022, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import os
from unittest import TestCase, main
import tempfile

import skbio
import biom
import pandas as pd
import numpy as np
import qiime2
from q2_types.feature_data import DNAIterator
import csv

from q2_feature_table import tabulate_seqs, summarize
from q2_feature_table._summarize._visualizer import _compute_descriptive_stats
from q2_feature_table._summarize._visualizer import _frequencies
from q2_feature_table._summarize._vega_spec import vega_spec


class TabulateSeqsTests(TestCase):

    def test_basic(self):
        seqs = DNAIterator(skbio.DNA(a, metadata=b) for a, b in (
            ('ACGT', {'id': 'seq1'}),
            ('AAAA', {'id': 'seq2'})))

        with tempfile.TemporaryDirectory() as output_dir:
            tabulate_seqs(output_dir, seqs)

            expected_fp = os.path.join(output_dir, 'index.html')
            self.assertTrue(os.path.exists(expected_fp))
            with open(expected_fp) as fh:
                file_text = fh.read()
                self.assertTrue('ACGT</a>' in file_text)
                self.assertTrue('<td>4</td>' in file_text)
                self.assertTrue('<td>seq2</td>' in file_text)

    def test_descriptive_stats(self):
        seq_lengths = [2, 2, 5, 6, 10]
        exp_stats = {
            'mean': 5.0, 'min': 2,
            'seven_num_summ_values': [2.0, 2.0, 2.0, 5.0, 6.0, 8.56, 9.68],
            'max': 10, 'count': 5, 'range': 8}
        rendered_stats = _compute_descriptive_stats(seq_lengths)
        self.assertEqual(exp_stats['count'], rendered_stats['count'])
        self.assertEqual(exp_stats['min'], rendered_stats['min'])
        self.assertEqual(exp_stats['max'], rendered_stats['max'])
        self.assertEqual(exp_stats['range'], rendered_stats['range'])
        self.assertAlmostEqual(exp_stats['mean'], rendered_stats['mean'])
        for expected, rendered in zip(exp_stats['seven_num_summ_values'],
                                      rendered_stats['seven_num_summ_values']):
            self.assertAlmostEqual(expected, rendered)

    def test_lengths_identical(self):
        seq_lengths = [5, 5, 5, 5, 5]
        exp_stats = {
            'mean': 5.0, 'min': 5,
            'seven_num_summ_values': [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
            'max': 5, 'count': 5, 'range': 0}
        rendered_stats = _compute_descriptive_stats(seq_lengths)
        self.assertEqual(exp_stats['count'], rendered_stats['count'])
        self.assertEqual(exp_stats['min'], rendered_stats['min'])
        self.assertEqual(exp_stats['max'], rendered_stats['max'])
        self.assertEqual(exp_stats['range'], rendered_stats['range'])
        self.assertAlmostEqual(exp_stats['mean'], rendered_stats['mean'])
        for expected, rendered in zip(exp_stats['seven_num_summ_values'],
                                      rendered_stats['seven_num_summ_values']):
            self.assertAlmostEqual(expected, rendered)

    def test_no_sequences(self):
        seq_lengths = []
        with self.assertRaisesRegex(ValueError, 'No values provided.'):
            _compute_descriptive_stats(seq_lengths)

    def test_descriptive_stats_integration(self):
        seqs = DNAIterator(skbio.DNA(a, metadata=b)for a, b in (
            ('A', {'id': 'seq01'}),
            ('AA', {'id': 'seq02'}),
            ('AAA', {'id': 'seq03'}),
            ('AAAA', {'id': 'seq04'}),
            ('AAAA', {'id': 'seq05'}),
            ('AAA', {'id': 'seq06'}),
            ('AA', {'id': 'seq07'}),
            ('AAAAAAAAAA', {'id': 'seq08'})))

        with tempfile.TemporaryDirectory() as output_dir:
            tabulate_seqs(output_dir, seqs)

            expected_fp = os.path.join(output_dir, 'index.html')

        # all expected values are unique. If they all render in index.html, our
        # function likely worked as expected.
            with open(expected_fp) as fh:
                file_text = fh.read()
                self.assertTrue('<td>8</td>' in file_text)
                self.assertTrue('<td>1</td>' in file_text)
                self.assertTrue('<td>10</td>' in file_text)
                self.assertTrue('<td>3.62</td>' in file_text)
                self.assertTrue('<td>9</td>' in file_text)
                self.assertTrue('<td>1</td>' in file_text)
                self.assertTrue('<td>1</td>' in file_text)
                self.assertTrue('<td>2</td>' in file_text)
                self.assertTrue('<td>3</td>' in file_text)
                self.assertTrue('<td>4</td>' in file_text)
                self.assertTrue('<td>6</td>' in file_text)
                self.assertTrue('<td>9</td>' in file_text)

    def test_tsv_builder(self):
        seqs = DNAIterator(skbio.DNA(a, metadata=b)for a, b in (
            ('A', {'id': 'seq01'}),
            ('AA', {'id': 'seq02'}),
            ('AAA', {'id': 'seq03'}),
            ('AAAA', {'id': 'seq04'}),
            ('AAAA', {'id': 'seq05'}),
            ('AAA', {'id': 'seq06'}),
            ('AA', {'id': 'seq07'}),
            ('AAAAAAAAAA', {'id': 'seq08'})))

        # Do the files exist?
        with tempfile.TemporaryDirectory() as output_dir:
            tabulate_seqs(output_dir, seqs)

            expected_stats_fp = os.path.join(
                output_dir, 'descriptive_stats.tsv')
            expected_summary_fp = os.path.join(
                output_dir, 'seven_number_summary.tsv')
            self.assertTrue(os.path.exists(expected_stats_fp))
            self.assertTrue(os.path.exists(expected_summary_fp))

            # Was data written to the files?
            with open(expected_stats_fp) as stats_tsv:
                tsv_reader = csv.reader(stats_tsv, dialect="excel-tab")
                tsv_text = []
                for row in tsv_reader:
                    tsv_text.append(row)
            self.assertEqual(['Statistic', 'Value'], tsv_text[0])
            self.assertEqual(['count', '8'], tsv_text[1])

            with open(expected_summary_fp) as summ_tsv:
                tsv_reader = csv.reader(summ_tsv, dialect="excel-tab")
                tsv_text = []
                for row in tsv_reader:
                    tsv_text.append(row)
            self.assertEqual(['Quantile', 'Value'], tsv_text[0])
            self.assertEqual(['0.02', '1.14'], tsv_text[1])

            # Does link html generate correctly?
            expected_index_fp = os.path.join(output_dir, 'index.html')
            with open(expected_index_fp) as fh:
                self.assertTrue('href="descriptive_stats.tsv"' in fh.read())

            with open(expected_index_fp) as fh:
                self.assertTrue(
                    'href="seven_number_summary.tsv"' in fh.read())


class SummarizeTests(TestCase):

    def test_basic(self):
        table = biom.Table(np.array([[0, 1, 3],
                                     [1, 1, 2],
                                     [400, 450, 500],
                                     [1000, 10000, 100000],
                                     [52, 42, 99]]),
                           ['O1', 'O2', '03', '04', 'O5'],
                           ['S1', 'S2', 'S3'])

        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table)

            index_fp = os.path.join(output_dir, 'index.html')
            self.assertTrue(os.path.exists(index_fp))

            feature_freq_fp = os.path.join(output_dir,
                                           'feature-frequency-detail.csv')
            self.assertTrue(os.path.exists(feature_freq_fp))
            self.assertTrue('O1,4' in open(feature_freq_fp).read())

            sample_freq_fp = os.path.join(output_dir,
                                          'sample-frequency-detail.csv')
            self.assertTrue(os.path.exists(sample_freq_fp))
            self.assertTrue('S1,1453' in open(sample_freq_fp).read())

    def test_frequency_ranges_are_zero(self):
        table = biom.Table(np.array([[25, 25, 25], [25, 25, 25]]),
                           ['O1', 'O2'],
                           ['S1', 'S2', 'S3'])

        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table)

            index_fp = os.path.join(output_dir, 'index.html')
            self.assertTrue(os.path.exists(index_fp))

            feature_freq_fp = os.path.join(output_dir,
                                           'feature-frequency-detail.csv')
            self.assertTrue(os.path.exists(feature_freq_fp))
            self.assertTrue('O1,75' in open(feature_freq_fp).read())

            sample_freq_fp = os.path.join(output_dir,
                                          'sample-frequency-detail.csv')
            self.assertTrue(os.path.exists(sample_freq_fp))
            self.assertTrue('S1,50' in open(sample_freq_fp).read())

    def test_one_sample(self):
        sample_frequencies_pdf_fn = 'sample-frequencies.pdf'
        # sample-frequencies.pdf should not be written when there is only
        # one sample...
        table = biom.Table(np.array([[0], [1]]),
                           ['O1', 'O2'],
                           ['S1'])
        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table)
            sample_frequencies_pdf_fp = \
                os.path.join(output_dir, sample_frequencies_pdf_fn)
            self.assertFalse(os.path.exists(sample_frequencies_pdf_fp))

        # but it should be written when there is more than one sample
        table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
                           ['O1', 'O2'],
                           ['S1', 'S2', 'S3'])
        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table)
            sample_frequencies_pdf_fp = \
                os.path.join(output_dir, sample_frequencies_pdf_fn)
            self.assertTrue(os.path.exists(sample_frequencies_pdf_fp))

    def test_one_feature(self):
        feature_frequencies_pdf_fn = 'feature-frequencies.pdf'
        # feature-frequencies.pdf should not be written when there is only
        # one feature...
        table = biom.Table(np.array([[0, 4]]),
                           ['O1'],
                           ['S1', 'S2'])
        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table)
            feature_frequencies_pdf_fp = \
                os.path.join(output_dir, feature_frequencies_pdf_fn)
            self.assertFalse(os.path.exists(feature_frequencies_pdf_fp))

        # but it should be written when there is more than one feature
        table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
                           ['O1', 'O2'],
                           ['S1', 'S2', 'S3'])
        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table)
            feature_frequencies_pdf_fp = \
                os.path.join(output_dir, feature_frequencies_pdf_fn)
            self.assertTrue(os.path.exists(feature_frequencies_pdf_fp))

    def test_w_sample_metadata(self):
        df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'],
                           'SampleType': ['gut', 'tongue', 'gut']},
                          index=pd.Index(['S1', 'S2', 'S3'], name='id'))
        metadata = qiime2.Metadata(df)
        table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
                           ['O1', 'O2'],
                           ['S1', 'S2', 'S3'])

        with tempfile.TemporaryDirectory() as output_dir:
            summarize(output_dir, table, metadata)

            index_fp = os.path.join(output_dir, 'index.html')
            self.assertTrue(os.path.exists(index_fp))

            feature_freq_fp = os.path.join(output_dir,
                                           'feature-frequency-detail.csv')
            self.assertTrue(os.path.exists(feature_freq_fp))
            self.assertTrue('O1,4' in open(feature_freq_fp).read())

            sample_freq_fp = os.path.join(output_dir,
                                          'sample-frequency-detail.csv')
            self.assertTrue(os.path.exists(sample_freq_fp))
            self.assertTrue('S1,1' in open(sample_freq_fp).read())

    def test_vega_spec_data(self):
        # test if metadata is converted correctly to vega compatible JSON
        df = pd.DataFrame({'Subject': ['subject-1', 'subject-1', 'subject-2'],
                           'SampleType': ['gut', 'tongue', 'gut']},
                          index=pd.Index(['S1', 'S2', 'S3'], name='id'))
        metadata = qiime2.Metadata(df)
        table = biom.Table(np.array([[0, 1, 3], [1, 1, 2]]),
                           ['O1', 'O2'],
                           ['S1', 'S2', 'S3'])
        sample_frequencies = _frequencies(table, axis='sample')
        spec = vega_spec(metadata, sample_frequencies)

        self.assertTrue([{'id': 'S1', 'metadata': {'Subject': 'subject-1',
                          'SampleType': 'gut'}, 'frequency': 1.0},
                         {'id': 'S2', 'metadata': {'Subject': 'subject-1',
                          'SampleType': 'tongue'}, 'frequency': 2.0},
                         {'id': 'S3', 'metadata': {'Subject': 'subject-2',
                          'SampleType': 'gut'}, 'frequency': 5.0}],
                        spec['data'][0]['values'])

    def test_vega_spec_nandling(self):
        df = pd.DataFrame({'a': [0.5, float('nan')]})
        df.index = df.index.map(str)
        df.index.name = 'id'
        md = qiime2.Metadata(df)
        sample_freqs = pd.Series([10, 50])
        sample_freqs.index = sample_freqs.index.map(str)

        spec = vega_spec(md, sample_freqs)
        exp = [{'frequency': 10, 'id': '0', 'metadata': {'a': 0.5}},
               {'frequency': 50, 'id': '1', 'metadata': {'a': None}}]

        self.assertEqual(spec['data'][0]['values'], exp)


if __name__ == "__main__":
    main()