1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import os
import tarfile
import json
import pandas as pd
import numpy as np
import qiime2
import qiime2.plugin.model as model
import sklearn
import joblib
from sklearn.pipeline import Pipeline
from .plugin_setup import plugin
from ._format import (SampleEstimatorDirFmt, JSONFormat, BooleanSeriesFormat,
ImportanceFormat, PredictionsFormat, PickleFormat,
ProbabilitiesFormat)
def _read_dataframe(fh):
# Using `dtype=object` and `set_index` to avoid type casting/inference
# of any columns or the index.
df = pd.read_csv(fh, sep='\t', header=0, dtype='str')
df.set_index(df.columns[0], drop=True, append=False, inplace=True)
df.index.name = 'id'
return df
@plugin.register_transformer
def _1(data: pd.Series) -> (BooleanSeriesFormat):
ff = BooleanSeriesFormat()
with ff.open() as fh:
data.to_csv(fh, sep='\t', header=True)
return ff
@plugin.register_transformer
def _2(ff: BooleanSeriesFormat) -> (pd.Series):
with ff.open() as fh:
df = _read_dataframe(fh)
return df.iloc[:, 0]
@plugin.register_transformer
def _3(ff: BooleanSeriesFormat) -> (qiime2.Metadata):
with ff.open() as fh:
return qiime2.Metadata(_read_dataframe(fh))
@plugin.register_transformer
def _4(data: pd.Series) -> (PredictionsFormat):
ff = PredictionsFormat()
with ff.open() as fh:
data.to_csv(fh, sep='\t', header=True)
return ff
@plugin.register_transformer
def _5(ff: PredictionsFormat) -> (pd.Series):
with ff.open() as fh:
df = _read_dataframe(fh)
return pd.to_numeric(df.iloc[:, 0], errors='ignore')
@plugin.register_transformer
def _6(ff: PredictionsFormat) -> (qiime2.Metadata):
with ff.open() as fh:
return qiime2.Metadata(_read_dataframe(fh).apply(
lambda x: pd.to_numeric(x, errors='ignore')))
@plugin.register_transformer
def _7(data: pd.DataFrame) -> (ImportanceFormat):
ff = ImportanceFormat()
with ff.open() as fh:
data.to_csv(fh, sep='\t', header=True, na_rep=np.nan)
return ff
@plugin.register_transformer
def _8(ff: ImportanceFormat) -> (pd.DataFrame):
with ff.open() as fh:
return _read_dataframe(fh).apply(
lambda x: pd.to_numeric(x, errors='raise'))
@plugin.register_transformer
def _9(ff: ImportanceFormat) -> (qiime2.Metadata):
with ff.open() as fh:
return qiime2.Metadata(_read_dataframe(fh).apply(
lambda x: pd.to_numeric(x, errors='raise')))
@plugin.register_transformer
def _10(data: pd.DataFrame) -> (ProbabilitiesFormat):
ff = ProbabilitiesFormat()
with ff.open() as fh:
data.to_csv(fh, sep='\t', na_rep=np.nan, header=True)
return ff
@plugin.register_transformer
def _11(ff: ProbabilitiesFormat) -> (pd.DataFrame):
with ff.open() as fh:
return _read_dataframe(fh).apply(
lambda x: pd.to_numeric(x, errors='raise'))
@plugin.register_transformer
def _12(ff: ProbabilitiesFormat) -> (qiime2.Metadata):
with ff.open() as fh:
return qiime2.Metadata(_read_dataframe(fh).apply(
lambda x: pd.to_numeric(x, errors='raise')))
@plugin.register_transformer
def _a(dirfmt: SampleEstimatorDirFmt) -> Pipeline:
sklearn_version = dirfmt.version_info.view(dict)['sklearn-version']
if sklearn_version != sklearn.__version__:
raise ValueError('The scikit-learn version (%s) used to generate this'
' artifact does not match the current version'
' of scikit-learn installed (%s). Please retrain your'
' classifier for your current deployment to prevent'
' data-corruption errors.'
% (sklearn_version, sklearn.__version__))
sklearn_pipeline = dirfmt.sklearn_pipeline.view(PickleFormat)
with tarfile.open(str(sklearn_pipeline)) as tar:
tmpdir = model.DirectoryFormat()
dirname = str(tmpdir)
def is_within_directory(directory, target):
abs_directory = os.path.abspath(directory)
abs_target = os.path.abspath(target)
prefix = os.path.commonprefix([abs_directory, abs_target])
return prefix == abs_directory
def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
for member in tar.getmembers():
member_path = os.path.join(path, member.name)
if not is_within_directory(path, member_path):
raise Exception("Attempted Path Traversal in Tar File")
tar.extractall(path, members, numeric_owner=numeric_owner)
safe_extract(tar, dirname)
pipeline = joblib.load(os.path.join(dirname, 'sklearn_pipeline.pkl'))
for fn in tar.getnames():
os.unlink(os.path.join(dirname, fn))
return pipeline
@plugin.register_transformer
def _b(data: Pipeline) -> SampleEstimatorDirFmt:
sklearn_pipeline = PickleFormat()
with tarfile.open(str(sklearn_pipeline), 'w') as tar:
tmpdir = model.DirectoryFormat()
pf = os.path.join(str(tmpdir), 'sklearn_pipeline.pkl')
for fn in joblib.dump(data, pf):
tar.add(fn, os.path.basename(fn))
os.unlink(fn)
dirfmt = SampleEstimatorDirFmt()
dirfmt.version_info.write_data(
{'sklearn-version': sklearn.__version__}, dict)
dirfmt.sklearn_pipeline.write_data(sklearn_pipeline, PickleFormat)
return dirfmt
@plugin.register_transformer
def _d(fmt: JSONFormat) -> dict:
with fmt.open() as fh:
return json.load(fh)
@plugin.register_transformer
def _e(data: dict) -> JSONFormat:
result = JSONFormat()
with result.open() as fh:
json.dump(data, fh)
return result
|