1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.metrics import mean_squared_error, accuracy_score
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline
import qiime2
from qiime2.plugin import get_available_cores
import pandas as pd
import biom
import skbio
from .utilities import (_load_data, _prepare_training_data,
nested_cross_validation, _fit_estimator,
_extract_features, _plot_accuracy,
_summarize_estimator, predict_probabilities,
_classifiers)
defaults = {
'test_size': 0.2,
'step': 0.05,
'cv': 5,
'n_jobs': 1,
'n_estimators': 100,
'estimator_c': 'RandomForestClassifier',
'estimator_r': 'RandomForestRegressor',
'palette': 'sirocco',
'missing_samples': 'error'
}
def metatable(ctx,
metadata,
table=None,
missing_samples='ignore',
missing_values='error',
drop_all_unique=False):
# gather numeric metadata
metadata = metadata.filter_columns(
column_type='numeric', drop_all_unique=drop_all_unique,
drop_zero_variance=True, drop_all_missing=True).to_dataframe()
if missing_values == 'drop_samples':
metadata = metadata.dropna(axis=0)
elif missing_values == 'drop_features':
metadata = metadata.dropna(axis=1)
elif missing_values == 'error' and metadata.isnull().values.any():
raise ValueError('You are attempting to coerce metadata containing '
'missing values into a feature table! These may '
'cause fatal errors downstream and must be removed '
'or converted to 0. See the missing_values parameter '
'to review your options.')
elif missing_values == 'fill':
metadata = metadata.fillna(0.)
# drop columns with negative values
# grab column IDs with all values >= 0
metadata = metadata.loc[:, (metadata >= 0).all(axis=0)]
if len(metadata.columns) == 0:
raise ValueError('All metadata columns have been filtered.')
if len(metadata.index) == 0:
raise ValueError('All metadata samples have been filtered.')
# only retain IDs that intersect with table
if table is not None:
tab = table.view(biom.Table)
table_ids = set(tab.ids())
metadata_ids = set(metadata.index)
sample_ids = table_ids.intersection(metadata_ids)
if missing_samples == 'error' and len(sample_ids) != len(table_ids):
raise ValueError('Missing samples in metadata: %r' %
table_ids.difference(metadata_ids))
else:
metadata = metadata.loc[list(sample_ids)]
if len(sample_ids) < len(table_ids):
tab = tab.filter(
ids_to_keep=sample_ids, axis='sample', inplace=False)
table = ctx.make_artifact('FeatureTable[Frequency]', tab)
# convert to FeatureTable[Frequency]
metadata = metadata.T
metadata = biom.table.Table(
metadata.values, metadata.index, metadata.columns)
metatab = ctx.make_artifact('FeatureTable[Frequency]', metadata)
# optionally merge with existing feature table
if table is not None:
merge = ctx.get_action('feature_table', 'merge')
metatab, = merge(
[table, metatab], overlap_method='error_on_overlapping_feature')
return metatab
def _fit_predict_knn_cv(
x: pd.DataFrame, y: pd.Series, k: int, cv: int,
random_state: int, n_jobs: int
) -> (pd.Series, pd.Series):
if n_jobs == 0:
n_jobs = get_available_cores()
kf = KFold(n_splits=cv, shuffle=True, random_state=random_state)
# train and test with CV
predictions, pred_ids, truth = [], [], []
for train_index, test_index in kf.split(x):
x_train, x_test = x.iloc[train_index, train_index], \
x.iloc[test_index, train_index]
y_train, y_test = y[train_index], y[test_index]
knn = KNeighborsClassifier(
n_neighbors=k, metric='precomputed', n_jobs=n_jobs
)
knn.fit(x_train, y_train)
# gather predictions for the confusion matrix
predictions.append(knn.predict(x_test))
pred_ids.extend(x_test.index.tolist())
truth.append(y_test)
predictions = pd.Series(
np.concatenate(predictions).ravel(),
index=pd.Index(pred_ids, name='SampleID')
)
truth = pd.concat(truth)
truth.index.name = 'SampleID'
return predictions, truth
def classify_samples_from_dist(
ctx, distance_matrix, metadata, k=1, cv=defaults['cv'],
random_state=None, n_jobs=defaults['n_jobs'],
palette=defaults['palette']
):
""" Trains and evaluates a KNN classifier from a distance matrix
using cross-validation."""
distance_matrix = distance_matrix \
.view(skbio.DistanceMatrix) \
.to_data_frame()
# reorder (required for splitting into train/test)
metadata_ser = metadata.to_series()[distance_matrix.index]
predictions, truth = _fit_predict_knn_cv(
distance_matrix, metadata_ser, k, cv, random_state, n_jobs
)
predictions = qiime2.Artifact.import_data(
'SampleData[ClassifierPredictions]', predictions
)
truth = qiime2.CategoricalMetadataColumn(truth)
confusion = ctx.get_action('sample_classifier', 'confusion_matrix')
accuracy_results, = confusion(
predictions, truth, missing_samples='ignore', palette=palette
)
return predictions, accuracy_results
def classify_samples(ctx,
table,
metadata,
test_size=defaults['test_size'],
step=defaults['step'],
cv=defaults['cv'],
random_state=None,
n_jobs=defaults['n_jobs'],
n_estimators=defaults['n_estimators'],
estimator=defaults['estimator_c'],
optimize_feature_selection=False,
parameter_tuning=False,
palette=defaults['palette'],
missing_samples=defaults['missing_samples']):
split = ctx.get_action('sample_classifier', 'split_table')
fit = ctx.get_action('sample_classifier', 'fit_classifier')
predict_test = ctx.get_action(
'sample_classifier', 'predict_classification')
summarize_estimator = ctx.get_action('sample_classifier', 'summarize')
confusion = ctx.get_action('sample_classifier', 'confusion_matrix')
heat = ctx.get_action('sample_classifier', 'heatmap')
X_train, X_test, y_train, y_test = split(table, metadata, test_size,
random_state,
stratify=True,
missing_samples=missing_samples)
sample_estimator, importance = fit(
X_train, metadata, step, cv, random_state, n_jobs, n_estimators,
estimator, optimize_feature_selection, parameter_tuning,
missing_samples='ignore')
predictions, probabilities, = predict_test(
X_test, sample_estimator, n_jobs)
summary, = summarize_estimator(sample_estimator)
accuracy_results, = confusion(predictions, metadata, probabilities,
missing_samples='ignore', palette=palette)
_heatmap, _ = heat(table, importance, sample_metadata=metadata,
group_samples=True, missing_samples=missing_samples)
return (sample_estimator, importance, predictions, summary,
accuracy_results, probabilities, _heatmap, y_train, y_test)
def regress_samples(ctx,
table,
metadata,
test_size=defaults['test_size'],
step=defaults['step'],
cv=defaults['cv'],
random_state=None,
n_jobs=defaults['n_jobs'],
n_estimators=defaults['n_estimators'],
estimator=defaults['estimator_r'],
optimize_feature_selection=False,
stratify=False,
parameter_tuning=False,
missing_samples=defaults['missing_samples']):
split = ctx.get_action('sample_classifier', 'split_table')
fit = ctx.get_action('sample_classifier', 'fit_regressor')
predict_test = ctx.get_action('sample_classifier', 'predict_regression')
summarize_estimator = ctx.get_action('sample_classifier', 'summarize')
scatter = ctx.get_action('sample_classifier', 'scatterplot')
X_train, X_test, y_train, y_test = split(table, metadata, test_size,
random_state,
stratify,
missing_samples=missing_samples)
sample_estimator, importance = fit(
X_train, metadata, step, cv, random_state, n_jobs, n_estimators,
estimator, optimize_feature_selection, parameter_tuning,
missing_samples='ignore')
predictions, = predict_test(X_test, sample_estimator, n_jobs)
summary, = summarize_estimator(sample_estimator)
accuracy_results, = scatter(predictions, metadata, 'ignore')
return (sample_estimator, importance, predictions, summary,
accuracy_results)
def fit_classifier(table: biom.Table,
metadata: qiime2.CategoricalMetadataColumn,
step: float = defaults['step'], cv: int = defaults['cv'],
random_state: int = None, n_jobs: int = defaults['n_jobs'],
n_estimators: int = defaults['n_estimators'],
estimator: str = defaults['estimator_c'],
optimize_feature_selection: bool = False,
parameter_tuning: bool = False,
missing_samples: str = defaults['missing_samples']
) -> (Pipeline, pd.DataFrame):
estimator, importance = _fit_estimator(
table, metadata, estimator, n_estimators, step, cv, random_state,
n_jobs, optimize_feature_selection, parameter_tuning,
missing_samples=missing_samples, classification=True)
return estimator, importance
def fit_regressor(table: biom.Table,
metadata: qiime2.CategoricalMetadataColumn,
step: float = defaults['step'], cv: int = defaults['cv'],
random_state: int = None, n_jobs: int = defaults['n_jobs'],
n_estimators: int = defaults['n_estimators'],
estimator: str = defaults['estimator_r'],
optimize_feature_selection: bool = False,
parameter_tuning: bool = False,
missing_samples: str = defaults['missing_samples']
) -> (Pipeline, pd.DataFrame):
estimator, importance = _fit_estimator(
table, metadata, estimator, n_estimators, step, cv, random_state,
n_jobs, optimize_feature_selection, parameter_tuning,
missing_samples=missing_samples, classification=False)
return estimator, importance
def predict_base(table, sample_estimator, n_jobs):
if n_jobs == 0:
n_jobs = get_available_cores()
# extract feature data from biom
feature_data = _extract_features(table)
index = table.ids()
# reset n_jobs if this is a valid parameter for the estimator
if 'est__n_jobs' in sample_estimator.get_params().keys():
sample_estimator.set_params(est__n_jobs=n_jobs)
# predict values and output as series
y_pred = sample_estimator.predict(feature_data)
# need to flatten arrays that come out as multidimensional
y_pred = y_pred.flatten()
y_pred = pd.Series(y_pred, index=index, name='prediction')
y_pred.index.name = 'SampleID'
# log prediction probabilities (classifiers only)
if sample_estimator.named_steps.est.__class__.__name__ in _classifiers:
probs = predict_probabilities(sample_estimator, feature_data, index)
else:
probs = None
return y_pred, probs
def predict_classification(table: biom.Table, sample_estimator: Pipeline,
n_jobs: int = defaults['n_jobs']) -> (
pd.Series, pd.DataFrame):
return predict_base(table, sample_estimator, n_jobs)
def predict_regression(table: biom.Table, sample_estimator: Pipeline,
n_jobs: int = defaults['n_jobs']) -> pd.Series:
# we only return the predictions, not the probabilities, which are empty
# for regressors.
return predict_base(table, sample_estimator, n_jobs)[0]
def split_table(table: biom.Table, metadata: qiime2.MetadataColumn,
test_size: float = defaults['test_size'],
random_state: int = None, stratify: str = True,
missing_samples: str = defaults['missing_samples']
) -> (biom.Table, biom.Table, pd.Series, pd.Series):
column = metadata.name
X_train, X_test, y_train, y_test = _prepare_training_data(
table, metadata, column, test_size, random_state, load_data=True,
stratify=stratify, missing_samples=missing_samples)
return X_train, X_test, y_train, y_test
def regress_samples_ncv(
table: biom.Table, metadata: qiime2.NumericMetadataColumn,
cv: int = defaults['cv'], random_state: int = None,
n_jobs: int = defaults['n_jobs'],
n_estimators: int = defaults['n_estimators'],
estimator: str = defaults['estimator_r'], stratify: str = False,
parameter_tuning: bool = False,
missing_samples: str = defaults['missing_samples']
) -> (pd.Series, pd.DataFrame):
y_pred, importances, probabilities = nested_cross_validation(
table, metadata, cv, random_state, n_jobs, n_estimators, estimator,
stratify, parameter_tuning, classification=False,
scoring=mean_squared_error, missing_samples=missing_samples)
return y_pred, importances
def classify_samples_ncv(
table: biom.Table, metadata: qiime2.CategoricalMetadataColumn,
cv: int = defaults['cv'], random_state: int = None,
n_jobs: int = defaults['n_jobs'],
n_estimators: int = defaults['n_estimators'],
estimator: str = defaults['estimator_c'],
parameter_tuning: bool = False,
missing_samples: str = defaults['missing_samples']
) -> (pd.Series, pd.DataFrame, pd.DataFrame):
y_pred, importances, probabilities = nested_cross_validation(
table, metadata, cv, random_state, n_jobs, n_estimators, estimator,
stratify=True, parameter_tuning=parameter_tuning, classification=False,
scoring=accuracy_score, missing_samples=missing_samples)
return y_pred, importances, probabilities
def scatterplot(output_dir: str, predictions: pd.Series,
truth: qiime2.NumericMetadataColumn,
missing_samples: str = defaults['missing_samples']) -> None:
predictions = pd.to_numeric(predictions)
_plot_accuracy(output_dir, predictions, truth, probabilities=None,
missing_samples=missing_samples,
classification=False, palette=None,
plot_title='regression scatterplot')
def confusion_matrix(output_dir: str,
predictions: pd.Series,
truth: qiime2.CategoricalMetadataColumn,
probabilities: pd.DataFrame = None,
missing_samples: str = defaults['missing_samples'],
vmin: int = 'auto', vmax: int = 'auto',
palette: str = defaults['palette']) -> None:
if vmin == 'auto':
vmin = None
if vmax == 'auto':
vmax = None
predictions = predictions.astype(str)
_plot_accuracy(output_dir, predictions, truth, probabilities,
missing_samples=missing_samples,
classification=True, palette=palette,
plot_title='confusion matrix', vmin=vmin, vmax=vmax)
def summarize(output_dir: str, sample_estimator: Pipeline):
_summarize_estimator(output_dir, sample_estimator)
def heatmap(ctx, table, importance, sample_metadata=None,
feature_metadata=None, feature_count=50,
importance_threshold=0, group_samples=False, normalize=True,
missing_samples='ignore', metric='braycurtis',
method='average', cluster='features', color_scheme='rocket'):
filter_features = ctx.get_action('feature_table', 'filter_features')
group = ctx.get_action('feature_table', 'group')
make_heatmap = ctx.get_action('feature_table', 'heatmap')
filter_samples = ctx.get_action('feature_table', 'filter_samples')
if group_samples and sample_metadata is None:
raise ValueError(
'If group_samples is enabled, sample_metadata are not optional.')
if missing_samples == 'ignore' and sample_metadata is None:
raise ValueError(
'If missing_samples is ignore, metadata are not optional')
clustermap_params = {
'cluster': cluster, 'normalize': normalize, 'metric': metric,
'method': method, 'color_scheme': color_scheme}
# load importance data and sum rows (to average importances if there are
# multiple scores).
importance = importance.view(pd.DataFrame)
importance = importance.sum(1)
# filter importances by user criteria
importance = importance.sort_values(ascending=False)
if importance_threshold > 0:
importance = importance[importance > importance_threshold]
if feature_count > 0:
importance = importance[:feature_count]
importance.name = 'importance'
importance = qiime2.Metadata(importance.to_frame())
# filter features by importance
table, = filter_features(table, metadata=importance)
if missing_samples == 'ignore':
table, = filter_samples(
table, metadata=qiime2.Metadata(sample_metadata.to_dataframe()))
# optionally group feature table by sample metadata
# otherwise annotate heatmap with sample metadata
if group_samples:
table, = group(table, metadata=sample_metadata, axis='sample',
mode='sum')
elif sample_metadata is not None:
clustermap_params['sample_metadata'] = sample_metadata
# label features using feature metadata
if feature_metadata is not None:
clustermap_params['feature_metadata'] = feature_metadata
# make yer heatmap
clustermap, = make_heatmap(table, **clustermap_params)
return clustermap, table
# The following method is experimental and is not registered in the current
# release. Any use of the API is at user's own risk.
def detect_outliers(table: biom.Table,
metadata: qiime2.Metadata, subset_column: str = None,
subset_value: str = None,
n_estimators: int = defaults['n_estimators'],
contamination: float = 0.05, random_state: int = None,
n_jobs: int = defaults['n_jobs'],
missing_samples: str = 'ignore') -> (pd.Series):
features, sample_md = _load_data(
table, metadata, missing_samples=missing_samples)
# if opting to train on a subset, choose subset that fits criteria
if subset_column and subset_value:
X_train = \
[f for s, f in
zip(sample_md[subset_column] == subset_value, features) if s]
# raise error if subset_column or subset_value (but not both) are set
elif subset_column is not None or subset_value is not None:
raise ValueError((
'subset_column and subset_value must both be provided with a '
'valid value to perform model training on a subset of data.'))
else:
X_train = features
# fit isolation tree
estimator = Pipeline([('dv', DictVectorizer()),
('est', IsolationForest(n_jobs=n_jobs,
n_estimators=n_estimators,
contamination=contamination,
random_state=random_state,
))])
estimator.fit(X_train)
# predict outlier status
y_pred = estimator.predict(features)
y_pred = pd.Series(y_pred, index=sample_md.index)
# predict reports whether sample is an inlier; change to outlier status
y_pred[y_pred == -1] = 'True'
y_pred[y_pred == 1] = 'False'
y_pred.name = "outlier"
return y_pred
|