File: classify.py

package info (click to toggle)
q2-sample-classifier 2024.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,732 kB
  • sloc: python: 5,060; makefile: 41; sh: 13
file content (521 lines) | stat: -rw-r--r-- 21,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import numpy as np
from sklearn.ensemble import IsolationForest
from sklearn.metrics import mean_squared_error, accuracy_score
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline

import qiime2
from qiime2.plugin import get_available_cores
import pandas as pd
import biom
import skbio

from .utilities import (_load_data, _prepare_training_data,
                        nested_cross_validation, _fit_estimator,
                        _extract_features, _plot_accuracy,
                        _summarize_estimator, predict_probabilities,
                        _classifiers)


defaults = {
    'test_size': 0.2,
    'step': 0.05,
    'cv': 5,
    'n_jobs': 1,
    'n_estimators': 100,
    'estimator_c': 'RandomForestClassifier',
    'estimator_r': 'RandomForestRegressor',
    'palette': 'sirocco',
    'missing_samples': 'error'
}


def metatable(ctx,
              metadata,
              table=None,
              missing_samples='ignore',
              missing_values='error',
              drop_all_unique=False):
    # gather numeric metadata
    metadata = metadata.filter_columns(
        column_type='numeric', drop_all_unique=drop_all_unique,
        drop_zero_variance=True, drop_all_missing=True).to_dataframe()

    if missing_values == 'drop_samples':
        metadata = metadata.dropna(axis=0)
    elif missing_values == 'drop_features':
        metadata = metadata.dropna(axis=1)
    elif missing_values == 'error' and metadata.isnull().values.any():
        raise ValueError('You are attempting to coerce metadata containing '
                         'missing values into a feature table! These may '
                         'cause fatal errors downstream and must be removed '
                         'or converted to 0. See the missing_values parameter '
                         'to review your options.')
    elif missing_values == 'fill':
        metadata = metadata.fillna(0.)

    # drop columns with negative values
    # grab column IDs with all values >= 0
    metadata = metadata.loc[:, (metadata >= 0).all(axis=0)]

    if len(metadata.columns) == 0:
        raise ValueError('All metadata columns have been filtered.')
    if len(metadata.index) == 0:
        raise ValueError('All metadata samples have been filtered.')

    # only retain IDs that intersect with table
    if table is not None:
        tab = table.view(biom.Table)
        table_ids = set(tab.ids())
        metadata_ids = set(metadata.index)
        sample_ids = table_ids.intersection(metadata_ids)
        if missing_samples == 'error' and len(sample_ids) != len(table_ids):
            raise ValueError('Missing samples in metadata: %r' %
                             table_ids.difference(metadata_ids))
        else:
            metadata = metadata.loc[list(sample_ids)]
        if len(sample_ids) < len(table_ids):
            tab = tab.filter(
                ids_to_keep=sample_ids, axis='sample', inplace=False)
            table = ctx.make_artifact('FeatureTable[Frequency]', tab)

    # convert to FeatureTable[Frequency]
    metadata = metadata.T
    metadata = biom.table.Table(
        metadata.values, metadata.index, metadata.columns)
    metatab = ctx.make_artifact('FeatureTable[Frequency]', metadata)

    # optionally merge with existing feature table
    if table is not None:
        merge = ctx.get_action('feature_table', 'merge')
        metatab, = merge(
            [table, metatab], overlap_method='error_on_overlapping_feature')

    return metatab


def _fit_predict_knn_cv(
        x: pd.DataFrame, y: pd.Series, k: int, cv: int,
        random_state: int, n_jobs: int
) -> (pd.Series, pd.Series):
    if n_jobs == 0:
        n_jobs = get_available_cores()

    kf = KFold(n_splits=cv, shuffle=True, random_state=random_state)

    # train and test with CV
    predictions, pred_ids, truth = [], [], []
    for train_index, test_index in kf.split(x):
        x_train, x_test = x.iloc[train_index, train_index], \
                          x.iloc[test_index, train_index]
        y_train, y_test = y[train_index], y[test_index]

        knn = KNeighborsClassifier(
            n_neighbors=k, metric='precomputed', n_jobs=n_jobs
        )
        knn.fit(x_train, y_train)

        # gather predictions for the confusion matrix
        predictions.append(knn.predict(x_test))
        pred_ids.extend(x_test.index.tolist())
        truth.append(y_test)

    predictions = pd.Series(
        np.concatenate(predictions).ravel(),
        index=pd.Index(pred_ids, name='SampleID')
    )
    truth = pd.concat(truth)
    truth.index.name = 'SampleID'

    return predictions, truth


def classify_samples_from_dist(
        ctx, distance_matrix, metadata, k=1, cv=defaults['cv'],
        random_state=None, n_jobs=defaults['n_jobs'],
        palette=defaults['palette']
):
    """ Trains and evaluates a KNN classifier from a distance matrix
        using cross-validation."""
    distance_matrix = distance_matrix \
        .view(skbio.DistanceMatrix) \
        .to_data_frame()
    # reorder (required for splitting into train/test)
    metadata_ser = metadata.to_series()[distance_matrix.index]

    predictions, truth = _fit_predict_knn_cv(
        distance_matrix, metadata_ser, k, cv, random_state, n_jobs
    )
    predictions = qiime2.Artifact.import_data(
        'SampleData[ClassifierPredictions]', predictions
    )
    truth = qiime2.CategoricalMetadataColumn(truth)

    confusion = ctx.get_action('sample_classifier', 'confusion_matrix')
    accuracy_results, = confusion(
        predictions, truth, missing_samples='ignore', palette=palette
    )

    return predictions, accuracy_results


def classify_samples(ctx,
                     table,
                     metadata,
                     test_size=defaults['test_size'],
                     step=defaults['step'],
                     cv=defaults['cv'],
                     random_state=None,
                     n_jobs=defaults['n_jobs'],
                     n_estimators=defaults['n_estimators'],
                     estimator=defaults['estimator_c'],
                     optimize_feature_selection=False,
                     parameter_tuning=False,
                     palette=defaults['palette'],
                     missing_samples=defaults['missing_samples']):

    split = ctx.get_action('sample_classifier', 'split_table')
    fit = ctx.get_action('sample_classifier', 'fit_classifier')
    predict_test = ctx.get_action(
        'sample_classifier', 'predict_classification')
    summarize_estimator = ctx.get_action('sample_classifier', 'summarize')
    confusion = ctx.get_action('sample_classifier', 'confusion_matrix')
    heat = ctx.get_action('sample_classifier', 'heatmap')

    X_train, X_test, y_train, y_test = split(table, metadata, test_size,
                                             random_state,
                                             stratify=True,
                                             missing_samples=missing_samples)

    sample_estimator, importance = fit(
        X_train, metadata, step, cv, random_state, n_jobs, n_estimators,
        estimator, optimize_feature_selection, parameter_tuning,
        missing_samples='ignore')

    predictions, probabilities, = predict_test(
        X_test, sample_estimator, n_jobs)

    summary, = summarize_estimator(sample_estimator)

    accuracy_results, = confusion(predictions, metadata, probabilities,
                                  missing_samples='ignore', palette=palette)

    _heatmap, _ = heat(table, importance, sample_metadata=metadata,
                       group_samples=True, missing_samples=missing_samples)

    return (sample_estimator, importance, predictions, summary,
            accuracy_results, probabilities, _heatmap, y_train, y_test)


def regress_samples(ctx,
                    table,
                    metadata,
                    test_size=defaults['test_size'],
                    step=defaults['step'],
                    cv=defaults['cv'],
                    random_state=None,
                    n_jobs=defaults['n_jobs'],
                    n_estimators=defaults['n_estimators'],
                    estimator=defaults['estimator_r'],
                    optimize_feature_selection=False,
                    stratify=False,
                    parameter_tuning=False,
                    missing_samples=defaults['missing_samples']):

    split = ctx.get_action('sample_classifier', 'split_table')
    fit = ctx.get_action('sample_classifier', 'fit_regressor')
    predict_test = ctx.get_action('sample_classifier', 'predict_regression')
    summarize_estimator = ctx.get_action('sample_classifier', 'summarize')
    scatter = ctx.get_action('sample_classifier', 'scatterplot')

    X_train, X_test, y_train, y_test = split(table, metadata, test_size,
                                             random_state,
                                             stratify,
                                             missing_samples=missing_samples)

    sample_estimator, importance = fit(
        X_train, metadata, step, cv, random_state, n_jobs, n_estimators,
        estimator, optimize_feature_selection, parameter_tuning,
        missing_samples='ignore')

    predictions, = predict_test(X_test, sample_estimator, n_jobs)

    summary, = summarize_estimator(sample_estimator)

    accuracy_results, = scatter(predictions, metadata, 'ignore')

    return (sample_estimator, importance, predictions, summary,
            accuracy_results)


def fit_classifier(table: biom.Table,
                   metadata: qiime2.CategoricalMetadataColumn,
                   step: float = defaults['step'], cv: int = defaults['cv'],
                   random_state: int = None, n_jobs: int = defaults['n_jobs'],
                   n_estimators: int = defaults['n_estimators'],
                   estimator: str = defaults['estimator_c'],
                   optimize_feature_selection: bool = False,
                   parameter_tuning: bool = False,
                   missing_samples: str = defaults['missing_samples']
                   ) -> (Pipeline, pd.DataFrame):
    estimator, importance = _fit_estimator(
        table, metadata, estimator, n_estimators, step, cv, random_state,
        n_jobs, optimize_feature_selection, parameter_tuning,
        missing_samples=missing_samples, classification=True)

    return estimator, importance


def fit_regressor(table: biom.Table,
                  metadata: qiime2.CategoricalMetadataColumn,
                  step: float = defaults['step'], cv: int = defaults['cv'],
                  random_state: int = None, n_jobs: int = defaults['n_jobs'],
                  n_estimators: int = defaults['n_estimators'],
                  estimator: str = defaults['estimator_r'],
                  optimize_feature_selection: bool = False,
                  parameter_tuning: bool = False,
                  missing_samples: str = defaults['missing_samples']
                  ) -> (Pipeline, pd.DataFrame):
    estimator, importance = _fit_estimator(
        table, metadata, estimator, n_estimators, step, cv, random_state,
        n_jobs, optimize_feature_selection, parameter_tuning,
        missing_samples=missing_samples, classification=False)

    return estimator, importance


def predict_base(table, sample_estimator, n_jobs):
    if n_jobs == 0:
        n_jobs = get_available_cores()

    # extract feature data from biom
    feature_data = _extract_features(table)
    index = table.ids()

    # reset n_jobs if this is a valid parameter for the estimator
    if 'est__n_jobs' in sample_estimator.get_params().keys():
        sample_estimator.set_params(est__n_jobs=n_jobs)

    # predict values and output as series
    y_pred = sample_estimator.predict(feature_data)
    # need to flatten arrays that come out as multidimensional
    y_pred = y_pred.flatten()
    y_pred = pd.Series(y_pred, index=index, name='prediction')
    y_pred.index.name = 'SampleID'

    # log prediction probabilities (classifiers only)
    if sample_estimator.named_steps.est.__class__.__name__ in _classifiers:
        probs = predict_probabilities(sample_estimator, feature_data, index)
    else:
        probs = None

    return y_pred, probs


def predict_classification(table: biom.Table, sample_estimator: Pipeline,
                           n_jobs: int = defaults['n_jobs']) -> (
                            pd.Series, pd.DataFrame):
    return predict_base(table, sample_estimator, n_jobs)


def predict_regression(table: biom.Table, sample_estimator: Pipeline,
                       n_jobs: int = defaults['n_jobs']) -> pd.Series:
    # we only return the predictions, not the probabilities, which are empty
    # for regressors.
    return predict_base(table, sample_estimator, n_jobs)[0]


def split_table(table: biom.Table, metadata: qiime2.MetadataColumn,
                test_size: float = defaults['test_size'],
                random_state: int = None, stratify: str = True,
                missing_samples: str = defaults['missing_samples']
                ) -> (biom.Table, biom.Table, pd.Series, pd.Series):
    column = metadata.name
    X_train, X_test, y_train, y_test = _prepare_training_data(
        table, metadata, column, test_size, random_state, load_data=True,
        stratify=stratify, missing_samples=missing_samples)
    return X_train, X_test, y_train, y_test


def regress_samples_ncv(
        table: biom.Table, metadata: qiime2.NumericMetadataColumn,
        cv: int = defaults['cv'], random_state: int = None,
        n_jobs: int = defaults['n_jobs'],
        n_estimators: int = defaults['n_estimators'],
        estimator: str = defaults['estimator_r'], stratify: str = False,
        parameter_tuning: bool = False,
        missing_samples: str = defaults['missing_samples']
        ) -> (pd.Series, pd.DataFrame):

    y_pred, importances, probabilities = nested_cross_validation(
        table, metadata, cv, random_state, n_jobs, n_estimators, estimator,
        stratify, parameter_tuning, classification=False,
        scoring=mean_squared_error, missing_samples=missing_samples)
    return y_pred, importances


def classify_samples_ncv(
        table: biom.Table, metadata: qiime2.CategoricalMetadataColumn,
        cv: int = defaults['cv'], random_state: int = None,
        n_jobs: int = defaults['n_jobs'],
        n_estimators: int = defaults['n_estimators'],
        estimator: str = defaults['estimator_c'],
        parameter_tuning: bool = False,
        missing_samples: str = defaults['missing_samples']
        ) -> (pd.Series, pd.DataFrame, pd.DataFrame):

    y_pred, importances, probabilities = nested_cross_validation(
        table, metadata, cv, random_state, n_jobs, n_estimators, estimator,
        stratify=True, parameter_tuning=parameter_tuning, classification=False,
        scoring=accuracy_score, missing_samples=missing_samples)
    return y_pred, importances, probabilities


def scatterplot(output_dir: str, predictions: pd.Series,
                truth: qiime2.NumericMetadataColumn,
                missing_samples: str = defaults['missing_samples']) -> None:
    predictions = pd.to_numeric(predictions)

    _plot_accuracy(output_dir, predictions, truth, probabilities=None,
                   missing_samples=missing_samples,
                   classification=False, palette=None,
                   plot_title='regression scatterplot')


def confusion_matrix(output_dir: str,
                     predictions: pd.Series,
                     truth: qiime2.CategoricalMetadataColumn,
                     probabilities: pd.DataFrame = None,
                     missing_samples: str = defaults['missing_samples'],
                     vmin: int = 'auto', vmax: int = 'auto',
                     palette: str = defaults['palette']) -> None:

    if vmin == 'auto':
        vmin = None
    if vmax == 'auto':
        vmax = None

    predictions = predictions.astype(str)

    _plot_accuracy(output_dir, predictions, truth, probabilities,
                   missing_samples=missing_samples,
                   classification=True, palette=palette,
                   plot_title='confusion matrix', vmin=vmin, vmax=vmax)


def summarize(output_dir: str, sample_estimator: Pipeline):
    _summarize_estimator(output_dir, sample_estimator)


def heatmap(ctx, table, importance, sample_metadata=None,
            feature_metadata=None, feature_count=50,
            importance_threshold=0, group_samples=False, normalize=True,
            missing_samples='ignore', metric='braycurtis',
            method='average', cluster='features', color_scheme='rocket'):
    filter_features = ctx.get_action('feature_table', 'filter_features')
    group = ctx.get_action('feature_table', 'group')
    make_heatmap = ctx.get_action('feature_table', 'heatmap')
    filter_samples = ctx.get_action('feature_table', 'filter_samples')

    if group_samples and sample_metadata is None:
        raise ValueError(
            'If group_samples is enabled, sample_metadata are not optional.')

    if missing_samples == 'ignore' and sample_metadata is None:
        raise ValueError(
            'If missing_samples is ignore, metadata are not optional')

    clustermap_params = {
        'cluster': cluster, 'normalize': normalize, 'metric': metric,
        'method': method, 'color_scheme': color_scheme}

    # load importance data and sum rows (to average importances if there are
    # multiple scores).
    importance = importance.view(pd.DataFrame)
    importance = importance.sum(1)

    # filter importances by user criteria
    importance = importance.sort_values(ascending=False)
    if importance_threshold > 0:
        importance = importance[importance > importance_threshold]
    if feature_count > 0:
        importance = importance[:feature_count]
    importance.name = 'importance'
    importance = qiime2.Metadata(importance.to_frame())

    # filter features by importance
    table, = filter_features(table, metadata=importance)
    if missing_samples == 'ignore':
        table, = filter_samples(
            table, metadata=qiime2.Metadata(sample_metadata.to_dataframe()))

    # optionally group feature table by sample metadata
    # otherwise annotate heatmap with sample metadata
    if group_samples:
        table, = group(table, metadata=sample_metadata, axis='sample',
                       mode='sum')
    elif sample_metadata is not None:
        clustermap_params['sample_metadata'] = sample_metadata
    # label features using feature metadata
    if feature_metadata is not None:
        clustermap_params['feature_metadata'] = feature_metadata

    # make yer heatmap
    clustermap, = make_heatmap(table, **clustermap_params)

    return clustermap, table


# The following method is experimental and is not registered in the current
# release. Any use of the API is at user's own risk.
def detect_outliers(table: biom.Table,
                    metadata: qiime2.Metadata, subset_column: str = None,
                    subset_value: str = None,
                    n_estimators: int = defaults['n_estimators'],
                    contamination: float = 0.05, random_state: int = None,
                    n_jobs: int = defaults['n_jobs'],
                    missing_samples: str = 'ignore') -> (pd.Series):

    features, sample_md = _load_data(
        table, metadata, missing_samples=missing_samples)

    # if opting to train on a subset, choose subset that fits criteria
    if subset_column and subset_value:
        X_train = \
            [f for s, f in
             zip(sample_md[subset_column] == subset_value, features) if s]
    # raise error if subset_column or subset_value (but not both) are set
    elif subset_column is not None or subset_value is not None:
        raise ValueError((
            'subset_column and subset_value must both be provided with a '
            'valid value to perform model training on a subset of data.'))
    else:
        X_train = features

    # fit isolation tree
    estimator = Pipeline([('dv', DictVectorizer()),
                          ('est', IsolationForest(n_jobs=n_jobs,
                                                  n_estimators=n_estimators,
                                                  contamination=contamination,
                                                  random_state=random_state,
                                                  ))])
    estimator.fit(X_train)

    # predict outlier status
    y_pred = estimator.predict(features)
    y_pred = pd.Series(y_pred, index=sample_md.index)
    # predict reports whether sample is an inlier; change to outlier status
    y_pred[y_pred == -1] = 'True'
    y_pred[y_pred == 1] = 'False'
    y_pred.name = "outlier"
    return y_pred