1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import importlib
from qiime2.plugin import (
Int, Str, Float, Range, Bool, Plugin, Metadata, Choices, MetadataColumn,
Numeric, Categorical, Citations, Visualization, TypeMatch, Threads)
from q2_types.feature_table import (
FeatureTable, Frequency, RelativeFrequency, PresenceAbsence, Balance,
PercentileNormalized, Design, Composition)
from q2_types.sample_data import SampleData
from q2_types.feature_data import FeatureData
from q2_types.distance_matrix import DistanceMatrix
from q2_feature_table import heatmap_choices
from .classify import (
classify_samples, classify_samples_from_dist, regress_samples,
regress_samples_ncv,
classify_samples_ncv, fit_classifier, fit_regressor, split_table,
predict_classification, predict_regression, confusion_matrix, scatterplot,
summarize, metatable, heatmap)
from .visuals import _custom_palettes
from ._format import (SampleEstimatorDirFmt,
BooleanSeriesFormat,
BooleanSeriesDirectoryFormat,
ImportanceFormat,
ImportanceDirectoryFormat,
PredictionsFormat,
PredictionsDirectoryFormat,
ProbabilitiesFormat,
ProbabilitiesDirectoryFormat,
TrueTargetsDirectoryFormat)
from ._type import (ClassifierPredictions, RegressorPredictions,
SampleEstimator, BooleanSeries, Importance,
Classifier, Regressor, Probabilities,
TrueTargets)
import q2_sample_classifier
citations = Citations.load('citations.bib', package='q2_sample_classifier')
plugin = Plugin(
name='sample-classifier',
version=q2_sample_classifier.__version__,
website="https://github.com/qiime2/q2-sample-classifier",
package='q2_sample_classifier',
description=(
'This QIIME 2 plugin supports methods for supervised classification '
'and regression of sample metadata, and other supervised machine '
'learning methods.'),
short_description=(
'Plugin for machine learning prediction of sample metadata.'),
citations=[citations['Bokulich306167'], citations['pedregosa2011scikit']]
)
description = ('Predicts a {0} sample metadata column using a {1}. Splits '
'input data into training and test sets. The training set is '
'used to train and test the estimator using a stratified '
'k-fold cross-validation scheme. This includes optional steps '
'for automated feature extraction and hyperparameter '
'optimization. The test set validates classification accuracy '
'of the optimized estimator. Outputs classification results '
'for test set. For more details on the learning algorithm, '
'see http://scikit-learn.org/stable/supervised_learning.html')
ncv_description = ('Predicts a {0} sample metadata column using a {1}. Uses '
'nested stratified k-fold cross validation for automated '
'hyperparameter optimization and sample prediction. '
'Outputs predicted values for each input sample, and '
'relative importance of each feature for model accuracy.')
cv_description = ('Fit a supervised learning {0}. Outputs the fit estimator '
'(for prediction of test samples and/or unknown samples) '
'and the relative importance of each feature for model '
'accuracy. Optionally use k-fold cross-validation for '
'automatic recursive feature elimination and hyperparameter '
'tuning.')
predict_description = (
'Use trained estimator to predict target values for new samples. '
'These will typically be unseen samples, e.g., test data (derived '
'manually or from split_table) or samples with unknown values, but '
'can theoretically be any samples present in a feature table that '
'contain overlapping features with the feature table used to train '
'the estimator.')
inputs = {'table': FeatureTable[
Frequency | RelativeFrequency | PresenceAbsence | Composition]}
input_descriptions = {'table': 'Feature table containing all features that '
'should be used for target prediction.',
'probabilities': 'Predicted class probabilities for '
'each input sample.'}
parameters = {
'base': {
'random_state': Int,
'n_jobs': Threads,
'n_estimators': Int % Range(1, None),
'missing_samples': Str % Choices(['error', 'ignore'])},
'splitter': {
'test_size': Float % Range(0.0, 1.0, inclusive_end=False,
inclusive_start=True)},
'rfe': {
'step': Float % Range(0.0, 1.0, inclusive_end=False,
inclusive_start=False),
'optimize_feature_selection': Bool},
'cv': {
'cv': Int % Range(1, None),
'parameter_tuning': Bool},
'modified_metadata': {
'metadata': Metadata,
'column': Str},
'regressor': {'stratify': Bool}
}
parameter_descriptions = {
'base': {'random_state': 'Seed used by random number generator.',
'n_jobs': 'Number of jobs to run in parallel.',
'n_estimators': (
'Number of trees to grow for estimation. More trees will '
'improve predictive accuracy up to a threshold level, '
'but will also increase time and memory requirements. This '
'parameter only affects ensemble estimators, such as Random '
'Forest, AdaBoost, ExtraTrees, and GradientBoosting.'),
'missing_samples': (
'How to handle missing samples in metadata. "error" will fail '
'if missing samples are detected. "ignore" will cause the '
'feature table and metadata to be filtered, so that only '
'samples found in both files are retained.')},
'splitter': {
'test_size': ('Fraction of input samples to exclude from training set '
'and use for classifier testing.')},
'rfe': {
'step': ('If optimize_feature_selection is True, step is the '
'percentage of features to remove at each iteration.'),
'optimize_feature_selection': ('Automatically optimize input feature '
'selection using recursive feature '
'elimination.')},
'cv': {
'cv': 'Number of k-fold cross-validations to perform.',
'parameter_tuning': ('Automatically tune hyperparameters using random '
'grid search.')},
'regressor': {
'stratify': ('Evenly stratify training and test data among metadata '
'categories. If True, all values in column must match '
'at least two samples.')},
'estimator': {
'estimator': 'Estimator method to use for sample prediction.'}
}
classifiers = Str % Choices(
['RandomForestClassifier', 'ExtraTreesClassifier',
'GradientBoostingClassifier',
'AdaBoostClassifier[DecisionTree]', 'AdaBoostClassifier[ExtraTrees]',
'KNeighborsClassifier', 'LinearSVC', 'SVC'])
regressors = Str % Choices(
['RandomForestRegressor', 'ExtraTreesRegressor',
'GradientBoostingRegressor',
'AdaBoostRegressor[DecisionTree]', 'AdaBoostRegressor[ExtraTrees]',
'ElasticNet',
'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'])
output_descriptions = {
'predictions': 'Predicted target values for each input sample.',
'feature_importance': 'Importance of each input feature to model accuracy.'
}
pipeline_parameters = {
**parameters['base'],
**parameters['rfe'],
**parameters['splitter'],
**parameters['cv']}
classifier_pipeline_parameters = {
**pipeline_parameters,
'metadata': MetadataColumn[Categorical],
'estimator': classifiers,
'palette': Str % Choices(_custom_palettes().keys())}
regressor_pipeline_parameters = {
**pipeline_parameters,
'metadata': MetadataColumn[Numeric],
**parameters['regressor'],
'estimator': regressors}
pipeline_parameter_descriptions = {
**parameter_descriptions['base'],
**parameter_descriptions['rfe'],
**parameter_descriptions['splitter'],
**parameter_descriptions['estimator'],
**parameter_descriptions['cv']}
classifier_pipeline_parameter_descriptions = {
**pipeline_parameter_descriptions,
'metadata': 'Categorical metadata column to use as prediction target.',
'palette': 'The color palette to use for plotting.'}
regressor_pipeline_parameter_descriptions = {
**pipeline_parameter_descriptions,
**parameter_descriptions['regressor'],
'metadata': 'Numeric metadata column to use as prediction target.'}
pipeline_outputs = [
('model_summary', Visualization),
('accuracy_results', Visualization)]
regressor_pipeline_outputs = [
('sample_estimator', SampleEstimator[Regressor]),
('feature_importance', FeatureData[Importance]),
('predictions', SampleData[RegressorPredictions])] + pipeline_outputs
pipeline_output_descriptions = {
'sample_estimator': 'Trained sample estimator.',
**output_descriptions,
'model_summary': 'Summarized parameter and (if enabled) feature '
'selection information for the trained estimator.',
'accuracy_results': 'Accuracy results visualization.'}
plugin.pipelines.register_function(
function=classify_samples,
inputs=inputs,
parameters=classifier_pipeline_parameters,
outputs=[('sample_estimator', SampleEstimator[Classifier]),
('feature_importance', FeatureData[Importance]),
('predictions', SampleData[ClassifierPredictions])
] + pipeline_outputs + [
('probabilities', SampleData[Probabilities]),
('heatmap', Visualization),
('training_targets', SampleData[TrueTargets]),
('test_targets', SampleData[TrueTargets])],
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions=classifier_pipeline_parameter_descriptions,
output_descriptions={
**pipeline_output_descriptions,
'probabilities': input_descriptions['probabilities'],
'heatmap': 'A heatmap of the top 50 most important features from the '
'table.',
'training_targets': 'Series containing true target values of '
'train samples',
'test_targets': 'Series containing true target values '
'of test samples'},
name='Train and test a cross-validated supervised learning classifier.',
description=description.format(
'categorical', 'supervised learning classifier')
)
plugin.pipelines.register_function(
function=classify_samples_from_dist,
inputs={'distance_matrix': DistanceMatrix},
parameters={
'metadata': MetadataColumn[Categorical],
'k': Int,
'cv': parameters['cv']['cv'],
'random_state': parameters['base']['random_state'],
'n_jobs': parameters['base']['n_jobs'],
'palette': Str % Choices(_custom_palettes().keys()),
},
outputs=[
('predictions', SampleData[ClassifierPredictions]),
('accuracy_results', Visualization),
],
input_descriptions={'distance_matrix': 'a distance matrix'},
parameter_descriptions={
'metadata': 'Categorical metadata column to use as prediction target.',
'k': 'Number of nearest neighbors',
'cv': parameter_descriptions['cv']['cv'],
'random_state': parameter_descriptions['base']['random_state'],
'n_jobs': parameter_descriptions['base']['n_jobs'],
'palette': 'The color palette to use for plotting.',
},
output_descriptions={
'predictions': 'leave one out predictions for each sample',
'accuracy_results': 'Accuracy results visualization.',
},
name=('Run k-nearest-neighbors on a labeled distance matrix.'),
description=(
'Run k-nearest-neighbors on a labeled distance matrix.'
' Return cross-validated (leave one out) predictions and '
' accuracy. k = 1 by default'
)
)
plugin.pipelines.register_function(
function=regress_samples,
inputs=inputs,
parameters=regressor_pipeline_parameters,
outputs=regressor_pipeline_outputs,
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions=regressor_pipeline_parameter_descriptions,
output_descriptions=pipeline_output_descriptions,
name='Train and test a cross-validated supervised learning regressor.',
description=description.format(
'continuous', 'supervised learning regressor')
)
plugin.methods.register_function(
function=regress_samples_ncv,
inputs=inputs,
parameters={
**parameters['base'],
**parameters['cv'],
'metadata': MetadataColumn[Numeric],
**parameters['regressor'],
'estimator': regressors},
outputs=[('predictions', SampleData[RegressorPredictions]),
('feature_importance', FeatureData[Importance])],
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions={
**parameter_descriptions['base'],
**parameter_descriptions['cv'],
**parameter_descriptions['regressor'],
'metadata': 'Numeric metadata column to use as prediction target.',
**parameter_descriptions['estimator']},
output_descriptions=output_descriptions,
name='Nested cross-validated supervised learning regressor.',
description=ncv_description.format(
'continuous', 'supervised learning regressor')
)
plugin.methods.register_function(
function=classify_samples_ncv,
inputs=inputs,
parameters={
**parameters['base'],
**parameters['cv'],
'metadata': MetadataColumn[Categorical],
'estimator': classifiers},
outputs=[('predictions', SampleData[ClassifierPredictions]),
('feature_importance', FeatureData[Importance]),
('probabilities', SampleData[Probabilities])],
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions={
**parameter_descriptions['base'],
**parameter_descriptions['cv'],
'metadata': 'Categorical metadata column to use as prediction target.',
**parameter_descriptions['estimator']},
output_descriptions={**output_descriptions,
'probabilities': input_descriptions['probabilities']},
name='Nested cross-validated supervised learning classifier.',
description=ncv_description.format(
'categorical', 'supervised learning classifier')
)
plugin.methods.register_function(
function=fit_classifier,
inputs=inputs,
parameters={
**parameters['base'],
**parameters['rfe'],
**parameters['cv'],
'metadata': MetadataColumn[Categorical],
'estimator': classifiers},
outputs=[('sample_estimator', SampleEstimator[Classifier]),
('feature_importance', FeatureData[Importance])],
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions={
**parameter_descriptions['base'],
**parameter_descriptions['rfe'],
**parameter_descriptions['cv'],
'metadata': 'Numeric metadata column to use as prediction target.',
**parameter_descriptions['estimator']},
output_descriptions={
'feature_importance': output_descriptions['feature_importance'],
'sample_estimator': 'Trained sample classifier.'},
name='Fit a supervised learning classifier.',
description=cv_description.format('classifier')
)
plugin.methods.register_function(
function=fit_regressor,
inputs=inputs,
parameters={
**parameters['base'],
**parameters['rfe'],
**parameters['cv'],
'metadata': MetadataColumn[Numeric],
'estimator': regressors},
outputs=[('sample_estimator', SampleEstimator[Regressor]),
('feature_importance', FeatureData[Importance])],
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions={
**parameter_descriptions['base'],
**parameter_descriptions['rfe'],
**parameter_descriptions['cv'],
'metadata': 'Numeric metadata column to use as prediction target.',
**parameter_descriptions['estimator']},
output_descriptions={
'feature_importance': output_descriptions['feature_importance']},
name='Fit a supervised learning regressor.',
description=cv_description.format('regressor')
)
plugin.methods.register_function(
function=predict_classification,
inputs={**inputs, 'sample_estimator': SampleEstimator[Classifier]},
parameters={'n_jobs': parameters['base']['n_jobs']},
outputs=[('predictions', SampleData[ClassifierPredictions]),
('probabilities', SampleData[Probabilities])],
input_descriptions={
'table': input_descriptions['table'],
'sample_estimator': 'Sample classifier trained with fit_classifier.'},
parameter_descriptions={
'n_jobs': parameter_descriptions['base']['n_jobs']},
output_descriptions={
'predictions': 'Predicted target values for each input sample.',
'probabilities': input_descriptions['probabilities']},
name='Use trained classifier to predict target values for new samples.',
description=predict_description
)
plugin.methods.register_function(
function=predict_regression,
inputs={**inputs, 'sample_estimator': SampleEstimator[Regressor]},
parameters={'n_jobs': parameters['base']['n_jobs']},
outputs=[('predictions', SampleData[RegressorPredictions])],
input_descriptions={
'table': input_descriptions['table'],
'sample_estimator': 'Sample regressor trained with fit_regressor.'},
parameter_descriptions={
'n_jobs': parameter_descriptions['base']['n_jobs']},
output_descriptions={
'predictions': 'Predicted target values for each input sample.'},
name='Use trained regressor to predict target values for new samples.',
description=predict_description
)
plugin.visualizers.register_function(
function=scatterplot,
inputs={'predictions': SampleData[RegressorPredictions]},
parameters={
'truth': MetadataColumn[Numeric],
'missing_samples': parameters['base']['missing_samples']},
input_descriptions={'predictions': (
'Predicted values to plot on y axis. Must be predictions of '
'numeric data produced by a sample regressor.')},
parameter_descriptions={
'truth': 'Metadata column (true values) to plot on x axis.',
'missing_samples': parameter_descriptions['base']['missing_samples']},
name='Make 2D scatterplot and linear regression of regressor predictions.',
description='Make a 2D scatterplot and linear regression of predicted vs. '
'true values for a set of samples predicted using a sample '
'regressor.'
)
plugin.visualizers.register_function(
function=confusion_matrix,
inputs={'predictions': SampleData[ClassifierPredictions],
'probabilities': SampleData[Probabilities]},
parameters={
'truth': MetadataColumn[Categorical],
'missing_samples': parameters['base']['missing_samples'],
'vmin': Float | Str % Choices(['auto']),
'vmax': Float | Str % Choices(['auto']),
'palette': Str % Choices(_custom_palettes().keys())},
input_descriptions={
'predictions': 'Predicted values to plot on x axis. Should be '
'predictions of categorical data produced by a sample '
'classifier.',
'probabilities': input_descriptions['probabilities']},
parameter_descriptions={
'truth': 'Metadata column (true values) to plot on y axis.',
'missing_samples': parameter_descriptions['base']['missing_samples'],
'vmin': 'The minimum value to use for anchoring the colormap. If '
'"auto", vmin is set to the minimum value in the data.',
'vmax': 'The maximum value to use for anchoring the colormap. If '
'"auto", vmax is set to the maximum value in the data.',
'palette': 'The color palette to use for plotting.'},
name='Make a confusion matrix from sample classifier predictions.',
description='Make a confusion matrix and calculate accuracy of predicted '
'vs. true values for a set of samples classified using a '
'sample classifier. If per-sample class probabilities are '
'provided, will also generate Receiver Operating '
'Characteristic curves and calculate area under the curve for '
'each class.'
)
T = TypeMatch([Frequency, RelativeFrequency, PresenceAbsence, Balance,
PercentileNormalized, Design, Composition])
plugin.methods.register_function(
function=split_table,
inputs={'table': FeatureTable[T]},
parameters={
'random_state': parameters['base']['random_state'],
'missing_samples': parameters['base']['missing_samples'],
**parameters['splitter'],
'metadata': MetadataColumn[Numeric | Categorical],
**parameters['regressor']},
outputs=[('training_table', FeatureTable[T]),
('test_table', FeatureTable[T]),
('training_targets', SampleData[TrueTargets]),
('test_targets', SampleData[TrueTargets])],
input_descriptions={'table': 'Feature table containing all features that '
'should be used for target prediction.'},
parameter_descriptions={
'random_state': parameter_descriptions['base']['random_state'],
'missing_samples': parameter_descriptions['base']['missing_samples'],
**parameter_descriptions['splitter'],
**parameter_descriptions['regressor'],
'metadata': 'Numeric metadata column to use as prediction target.'},
output_descriptions={
'training_table': 'Feature table containing training samples',
'test_table': 'Feature table containing test samples',
'training_targets': 'Series containing true target values of '
'train samples',
'test_targets': 'Series containing true target values of '
'test samples'},
name='Split a feature table into training and testing sets.',
description=(
'Split a feature table into training and testing sets. By default '
'stratifies training and test sets on a metadata column, such that '
'values in that column are evenly represented across training and '
'test sets.')
)
plugin.visualizers.register_function(
function=summarize,
inputs={'sample_estimator': SampleEstimator[Classifier | Regressor]},
parameters={},
input_descriptions={
'sample_estimator': 'Sample estimator trained with fit_classifier or '
'fit_regressor.'},
parameter_descriptions={},
name='Summarize parameter and feature extraction information for a '
'trained estimator.',
description='Summarize parameter and feature extraction information for a '
'trained estimator.'
)
plugin.pipelines.register_function(
function=metatable,
inputs=inputs,
parameters={'metadata': Metadata,
'missing_samples': parameters['base']['missing_samples'],
'missing_values': Str % Choices(
['drop_samples', 'drop_features', 'error', 'fill']),
'drop_all_unique': Bool},
outputs=[('converted_table', FeatureTable[Frequency])],
input_descriptions={'table': input_descriptions['table']},
parameter_descriptions={
'metadata': 'Metadata file to convert to feature table.',
'missing_samples': parameter_descriptions['base']['missing_samples'],
'missing_values': (
'How to handle missing values (nans) in metadata. Either '
'"drop_samples" with missing values, "drop_features" with missing '
'values, "fill" missing values with zeros, or "error" if '
'any missing values are found.'),
'drop_all_unique': 'If True, columns that contain a unique value for '
'every ID will be dropped.'
},
output_descriptions={'converted_table': 'Converted feature table'},
name='Convert (and merge) positive numeric metadata (in)to feature table.',
description='Convert numeric sample metadata from TSV file into a feature '
'table. Optionally merge with an existing feature table. Only '
'numeric metadata will be converted; categorical columns will '
'be silently dropped. By default, if a table is used as input '
'only samples found in both the table and metadata '
'(intersection) are merged, and others are silently dropped. '
'Set missing_samples="error" to raise an error if samples '
'found in the table are missing from the metadata file. The '
'metadata file can always contain a superset of samples. Note '
'that columns will be dropped if they are non-numeric, '
'contain no unique values (zero '
'variance), contain only empty cells, or contain negative '
'values. This method currently only converts '
'postive numeric metadata into feature data. Tip: convert '
'categorical columns to dummy variables to include them in '
'the output feature table.'
)
plugin.pipelines.register_function(
function=heatmap,
inputs={**inputs, 'importance': FeatureData[Importance]},
parameters={'sample_metadata': MetadataColumn[Categorical],
'feature_metadata': MetadataColumn[Categorical],
'feature_count': Int % Range(0, None),
'importance_threshold': Float % Range(0, None),
'group_samples': Bool,
'normalize': Bool,
'missing_samples': parameters['base']['missing_samples'],
'metric': Str % Choices(heatmap_choices['metric']),
'method': Str % Choices(heatmap_choices['method']),
'cluster': Str % Choices(heatmap_choices['cluster']),
'color_scheme': Str % Choices(heatmap_choices['color_scheme']),
},
outputs=[('heatmap', Visualization),
('filtered_table', FeatureTable[Frequency])],
input_descriptions={'table': input_descriptions['table'],
'importance': 'Feature importances.'},
parameter_descriptions={
'sample_metadata': 'Sample metadata column to use for sample labeling '
'or grouping.',
'feature_metadata': 'Feature metadata (e.g., taxonomy) to use for '
'labeling features in the heatmap.',
'feature_count': 'Filter feature table to include top N most '
'important features. Set to zero to include all '
'features.',
'importance_threshold': 'Filter feature table to exclude any features '
'with an importance score less than this '
'threshold. Set to zero to include all '
'features.',
'group_samples': 'Group samples by sample metadata.',
'normalize': 'Normalize the feature table by adding a psuedocount '
'of 1 and then taking the log10 of the table.',
'missing_samples': parameter_descriptions['base']['missing_samples'],
'metric': 'Metrics exposed by seaborn (see http://seaborn.pydata.org/'
'generated/seaborn.clustermap.html#seaborn.clustermap for '
'more detail).',
'method': 'Clustering methods exposed by seaborn (see http://seaborn.'
'pydata.org/generated/seaborn.clustermap.html#seaborn.clust'
'ermap for more detail).',
'cluster': 'Specify which axes to cluster.',
'color_scheme': 'Color scheme for heatmap.',
},
output_descriptions={
'heatmap': 'Heatmap of important features.',
'filtered_table': 'Filtered feature table containing data displayed '
'in heatmap.'},
name='Generate heatmap of important features.',
description='Generate a heatmap of important features. Features are '
'filtered based on importance scores; samples are optionally '
'grouped by sample metadata; and a heatmap is generated that '
'displays (normalized) feature abundances per sample.'
)
# Registrations
plugin.register_semantic_types(
SampleEstimator, BooleanSeries, Importance, ClassifierPredictions,
RegressorPredictions, Classifier, Regressor, Probabilities, TrueTargets)
plugin.register_semantic_type_to_format(
SampleEstimator[Classifier],
artifact_format=SampleEstimatorDirFmt)
plugin.register_semantic_type_to_format(
SampleEstimator[Regressor],
artifact_format=SampleEstimatorDirFmt)
plugin.register_semantic_type_to_format(
SampleData[BooleanSeries],
artifact_format=BooleanSeriesDirectoryFormat)
plugin.register_semantic_type_to_format(
SampleData[RegressorPredictions],
artifact_format=PredictionsDirectoryFormat)
plugin.register_semantic_type_to_format(
SampleData[ClassifierPredictions],
artifact_format=PredictionsDirectoryFormat)
plugin.register_semantic_type_to_format(
FeatureData[Importance],
artifact_format=ImportanceDirectoryFormat)
plugin.register_semantic_type_to_format(
SampleData[Probabilities],
artifact_format=ProbabilitiesDirectoryFormat)
plugin.register_semantic_type_to_format(
SampleData[TrueTargets],
artifact_format=TrueTargetsDirectoryFormat)
plugin.register_formats(
SampleEstimatorDirFmt, BooleanSeriesFormat, BooleanSeriesDirectoryFormat,
ImportanceFormat, ImportanceDirectoryFormat, PredictionsFormat,
PredictionsDirectoryFormat, ProbabilitiesFormat,
ProbabilitiesDirectoryFormat,
TrueTargetsDirectoryFormat)
importlib.import_module('q2_sample_classifier._transformer')
|