File: test_actions.py

package info (click to toggle)
q2-sample-classifier 2024.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,732 kB
  • sloc: python: 5,060; makefile: 41; sh: 13
file content (183 lines) | stat: -rw-r--r-- 8,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------

import os

import pandas as pd
import pandas.testing as pdt
import numpy as np
import biom

import qiime2
from qiime2.plugins import sample_classifier

from q2_sample_classifier.tests.test_base_class import \
    SampleClassifierTestPluginBase
from q2_sample_classifier.tests.test_estimators import SampleEstimatorTestBase
from q2_sample_classifier.classify import summarize


class NowLetsTestTheActions(SampleClassifierTestPluginBase):

    def setUp(self):
        super().setUp()
        md = pd.Series(['a', 'a', 'b', 'b', 'b'],
                       index=['a', 'b', 'c', 'd', 'e'], name='bugs')
        md.index.name = 'SampleID'
        self.md = qiime2.CategoricalMetadataColumn(md)

        tab = biom.Table(
            np.array([[3, 6, 7, 3, 6], [3, 4, 5, 6, 2], [8, 6, 4, 1, 0],
                      [8, 6, 4, 1, 0], [8, 6, 4, 1, 0]]),
            observation_ids=['v', 'w', 'x', 'y', 'z'],
            sample_ids=['a', 'b', 'c', 'd', 'e'])
        self.tab = qiime2.Artifact.import_data('FeatureTable[Frequency]', tab)

        md2 = pd.DataFrame({'trash': ['a', 'a', 'b', 'b', 'b', 'junk'],
                            'floats': [0.1, 0.1, 1.3, 1.8, 1000.1, 0.1],
                            'ints': [0, 1, 2, 2, 2, 0],
                            'nans': [1, 1, 2, 2, np.nan, np.nan],
                            'negatives': [-7, -3, -1.2, -4, -9, -1]},
                           index=['a', 'b', 'c', 'd', 'e', 'peanut'])
        md2.index.name = 'SampleID'
        self.md2 = qiime2.Metadata(md2)

    # let's make sure the function runs w/o errors and that the correct
    # transformers are in place (see issue 114)
    def test_action_split_table(self):
        res = sample_classifier.actions.split_table(
            self.tab, self.md, test_size=0.5)
        y_train = res.training_targets.view(pd.Series)
        y_test = res.test_targets.view(pd.Series)

        # test whether extracted target is correct
        self.assertEqual(y_train.name, 'bugs')

        # test if complete target column is covered
        y_all = pd.concat([y_train, y_test]).sort_index()
        y_all.index.name = 'SampleID'
        pdt.assert_series_equal(y_all, self.md._series)

    def test_metatable(self):
        exp = biom.Table(
            np.array([[0.1, 0.1, 1.3, 1.8, 1000.1, 0.1],
                      [0, 1, 2, 2, 2, 0]]),
            observation_ids=['floats', 'ints'],
            sample_ids=['a', 'b', 'c', 'd', 'e', 'peanut'])
        res, = sample_classifier.actions.metatable(
            self.md2, missing_values='drop_features')
        report = res.view(biom.Table).descriptive_equality(exp)
        self.assertIn('Tables appear equal', report, report)

    def test_metatable_missing_error(self):
        with self.assertRaisesRegex(ValueError, "missing values"):
            sample_classifier.actions.metatable(
                self.md2, missing_values='error')

    def test_metatable_drop_samples(self):
        exp = biom.Table(
            np.array([[3, 6, 7, 3], [3, 4, 5, 6], [8, 6, 4, 1],
                      [8, 6, 4, 1], [8, 6, 4, 1],
                      [0.1, 0.1, 1.3, 1.8],
                      [0, 1, 2, 2], [1, 1, 2, 2]]),
            observation_ids=['v', 'w', 'x', 'y', 'z', 'floats', 'ints',
                             'nans'],
            sample_ids=['a', 'b', 'c', 'd'])
        res, = sample_classifier.actions.metatable(
            self.md2, self.tab, missing_values='drop_samples')
        report = res.view(biom.Table).descriptive_equality(exp)
        self.assertIn('Tables appear equal', report, report)

    def test_metatable_fill_na(self):
        exp = biom.Table(
            np.array([[3, 6, 7, 3, 6], [3, 4, 5, 6, 2], [8, 6, 4, 1, 0],
                      [8, 6, 4, 1, 0], [8, 6, 4, 1, 0],
                      [0.1, 0.1, 1.3, 1.8, 1000.1],
                      [0, 1, 2, 2, 2], [1., 1., 2., 2., 0.]]),
            observation_ids=['v', 'w', 'x', 'y', 'z', 'floats', 'ints',
                             'nans'],
            sample_ids=['a', 'b', 'c', 'd', 'e'])
        res, = sample_classifier.actions.metatable(
            self.md2, self.tab, missing_values='fill')
        report = res.view(biom.Table).descriptive_equality(exp)
        self.assertIn('Tables appear equal', report, report)

    def test_metatable_with_merge(self):
        exp = biom.Table(
            np.array([[3, 6, 7, 3, 6], [3, 4, 5, 6, 2], [8, 6, 4, 1, 0],
                      [8, 6, 4, 1, 0], [8, 6, 4, 1, 0],
                      [0.1, 0.1, 1.3, 1.8, 1000.1],
                      [0, 1, 2, 2, 2]]),
            observation_ids=['v', 'w', 'x', 'y', 'z', 'floats', 'ints'],
            sample_ids=['a', 'b', 'c', 'd', 'e'])
        res, = sample_classifier.actions.metatable(
            self.md2, self.tab, missing_values='drop_features')
        report = res.view(biom.Table).descriptive_equality(exp)
        self.assertIn('Tables appear equal', report, report)

    def test_metatable_with_merge_successful_inner_join(self):
        exp = biom.Table(
            np.array([[3, 6, 7, 3], [3, 4, 5, 6], [8, 6, 4, 1],
                      [8, 6, 4, 1], [8, 6, 4, 1], [0.1, 0.1, 1.3, 1.8],
                      [0, 1, 2, 2], [1., 1., 2., 2.]]),
            observation_ids=['v', 'w', 'x', 'y', 'z', 'floats', 'ints',
                             'nans'],
            sample_ids=['a', 'b', 'c', 'd'])
        res, = sample_classifier.actions.metatable(
            self.md2.filter_ids(['a', 'b', 'c', 'd']), self.tab,
            missing_values='error')
        report = res.view(biom.Table).descriptive_equality(exp)
        self.assertIn('Tables appear equal', report, report)

    def test_metatable_with_merge_error_inner_join(self):
        with self.assertRaisesRegex(ValueError, "Missing samples"):
            sample_classifier.actions.metatable(
                self.md2.filter_ids(['a', 'b', 'c', 'd']),
                self.tab, missing_samples='error',
                missing_values='drop_samples')

    def test_metatable_empty_metadata_after_drop_all_unique(self):
        with self.assertRaisesRegex(
                ValueError, "All metadata"):  # are belong to us
            sample_classifier.actions.metatable(
                self.md2.filter_ids(['b', 'c']), self.tab,
                missing_values='drop_samples', drop_all_unique=True)

    def test_metatable_no_samples_after_filtering(self):
        junk_md = pd.DataFrame(
            {'trash': ['a', 'a', 'b', 'b', 'b', 'junk'],
             'floats': [np.nan, np.nan, np.nan, 1.8, 1000.1, 0.1],
             'ints': [0, 1, 2, np.nan, 2, 0],
             'nans': [1, 1, 2, 2, np.nan, np.nan],
             'negatives': [-7, -4, -1.2, -4, -9, -1]},
            index=['a', 'b', 'c', 'd', 'e', 'peanut'])
        junk_md.index.name = 'SampleID'
        junk_md = qiime2.Metadata(junk_md)
        with self.assertRaisesRegex(ValueError, "All metadata samples"):
            sample_classifier.actions.metatable(
                junk_md, missing_values='drop_samples')


# make sure summarize visualizer works and that rfe_scores are stored properly
class TestSummarize(SampleEstimatorTestBase):

    def test_summary_with_rfecv(self):
        summarize(self.temp_dir.name, self.pipeline)

        self.assertTrue('rfe_plot.pdf' in os.listdir(self.temp_dir.name))
        self.assertTrue('rfe_plot.png' in os.listdir(self.temp_dir.name))
        self.assertTrue('rfe_scores.tsv' in os.listdir(self.temp_dir.name))

    def test_summary_without_rfecv(self):
        # nuke the rfe_scores to test the other branch of _summarize_estimator
        del self.pipeline.rfe_scores
        summarize(self.temp_dir.name, self.pipeline)

        self.assertFalse('rfe_plot.pdf' in os.listdir(self.temp_dir.name))
        self.assertFalse('rfe_plot.png' in os.listdir(self.temp_dir.name))
        self.assertFalse('rfe_scores.tsv' in os.listdir(self.temp_dir.name))