1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
from warnings import filterwarnings
import pandas as pd
import numpy as np
import skbio
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV
import pandas.testing as pdt
import biom
import qiime2
from qiime2.plugins import sample_classifier
from q2_sample_classifier.visuals import (
_custom_palettes, _roc_palette, _roc_per_class, _roc_micro_average,
_roc_macro_average, _binarize_labels, _generate_roc_plots)
from q2_sample_classifier.utilities import _extract_rfe_scores
from q2_sample_classifier.tests.test_base_class import \
SampleClassifierTestPluginBase
filterwarnings("ignore", category=UserWarning)
filterwarnings("ignore", category=Warning)
class TestRFEExtractor(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
np.random.seed(0)
self.X = np.random.rand(50, 20)
self.y = np.random.randint(0, 2, 50)
self.exp1 = pd.Series([
0.4999999999999999, 0.52, 0.52, 0.5399999999999999,
0.44000000000000006, 0.52, 0.4600000000000001,
0.5599999999999998, 0.52, 0.52, 0.5, 0.5399999999999999, 0.54,
0.5599999999999999, 0.47999999999999987, 0.6199999999999999,
0.5399999999999999, 0.5, 0.4999999999999999, 0.45999999999999996],
index=pd.Index(range(1, 21)), name='Accuracy')
self.exp2 = pd.Series([
0.5000000000000001, 0.52, 0.48, 0.5599999999999998, 0.5,
0.5799999999999998, 0.54, 0.4600000000000001, 0.6,
0.45999999999999996, 0.45999999999999996],
index=pd.Index([1] + [i for i in range(2, 21, 2)]),
name='Accuracy')
self.exp3 = pd.Series({1: 0.4600000000000001, 20: 0.45999999999999996},
name='Accuracy')
def extract_rfe_scores_template(self, steps, expected):
selector = RFECV(RandomForestClassifier(
random_state=123, n_estimators=2), step=steps, cv=10)
selector = selector.fit(self.X, self.y.ravel())
pdt.assert_series_equal(
_extract_rfe_scores(selector), expected)
def test_extract_rfe_scores_step_int_one(self):
self.extract_rfe_scores_template(1, self.exp1)
def test_extract_rfe_scores_step_float_one(self):
self.extract_rfe_scores_template(0.05, self.exp1)
def test_extract_rfe_scores_step_int_two(self):
self.extract_rfe_scores_template(2, self.exp2)
def test_extract_rfe_scores_step_float_two(self):
self.extract_rfe_scores_template(0.1, self.exp2)
def test_extract_rfe_scores_step_full_range(self):
self.extract_rfe_scores_template(20, self.exp3)
def test_extract_rfe_scores_step_out_of_range(self):
# should be equal to full_range
self.extract_rfe_scores_template(21, self.exp3)
# test classifier pipelines succeed on binary data
class TestBinaryClassification(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
self.md = qiime2.CategoricalMetadataColumn(pd.Series(
['a', 'a', 'a', 'b', 'b', 'b'],
index=pd.Index([c for c in 'abcdef'], name='id'), name='foo'))
tab = biom.Table(np.array(
[[13, 26, 37, 3, 6, 1], [33, 24, 23, 5, 6, 2],
[38, 26, 33, 4, 1, 0], [3, 2, 1, 22, 25, 31],
[2, 1, 3, 44, 46, 42]]),
observation_ids=[c for c in 'vwxyz'],
sample_ids=[c for c in 'abcdef'])
self.tab = qiime2.Artifact.import_data('FeatureTable[Frequency]', tab)
dist = skbio.DistanceMatrix.from_iterable(
iterable=[1, 16, 2, 1, 16, 17],
metric=lambda x, y: abs(y-x), keys=[c for c in 'abcdef']
)
self.dist = qiime2.Artifact.import_data('DistanceMatrix', dist)
# we will make sure predictions are correct, but no need to validate
# other outputs, which are tested elsewhere.
def test_classify_samples_binary(self):
res = sample_classifier.actions.classify_samples(
table=self.tab, metadata=self.md,
test_size=0.3, cv=1, n_estimators=2, n_jobs=1, random_state=123,
parameter_tuning=False, optimize_feature_selection=False)
exp = pd.Series(['a', 'b'], name='prediction',
index=pd.Index(['c', 'f'], name='id'))
pdt.assert_series_equal(exp, res[2].view(pd.Series))
def test_classify_samples_ncv_binary(self):
res = sample_classifier.actions.classify_samples_ncv(
table=self.tab, metadata=self.md, cv=3, n_estimators=2, n_jobs=1,
random_state=123, parameter_tuning=False)
exp = pd.Series([c for c in 'ababab'], name='prediction',
index=pd.Index([i for i in 'aebdcf'], name='id'))
pdt.assert_series_equal(exp, res[0].view(pd.Series))
def test_classify_samples_dist_binary(self):
res = sample_classifier.actions.classify_samples_from_dist(
distance_matrix=self.dist, metadata=self.md, k=2, cv=3,
n_jobs=1, random_state=123)
exp = pd.Series([c for c in 'abaaaa'], name='0',
index=pd.Index([i for i in 'abcdef'], name='id'))
pdt.assert_series_equal(
exp.sort_index(), res[0].view(pd.Series).sort_index()
)
class TestROC(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
self.md = np.array(
[[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0],
[1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0],
[0, 1, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1],
[0, 0, 1], [0, 0, 1]])
np.random.seed(0)
probs = np.random.rand(20, 3)
# probabilities should sum to 1 for each sample
self.probs = np.apply_along_axis(
lambda x: x / x.sum(), axis=1, arr=probs)
self.exp_fpr = {0: [0., 0.07692308, 0.46153846, 0.46153846, 0.76923077,
0.76923077, 0.84615385, 0.84615385, 1., 1.],
1: [0., 0., 0.15384615, 0.15384615, 0.61538462,
0.61538462, 0.69230769, 0.69230769, 1., 1.],
2: [0., 0.07142857, 0.07142857, 0.14285714, 0.14285714,
0.78571429, 0.78571429, 0.92857143, 0.92857143,
1.]}
self.exp_tdr = {0: [0., 0., 0., 0.57142857, 0.57142857, 0.71428571,
0.71428571, 0.85714286, 0.85714286, 1.],
1: [0., 0.14285714, 0.14285714, 0.28571429, 0.28571429,
0.57142857, 0.57142857, 0.85714286, 0.85714286,
1.],
2: [0., 0., 0.16666667, 0.16666667, 0.5, 0.5,
0.66666667, 0.66666667, 1., 1.]}
self.exp_roc_auc = {0: 0.3626373626373626, 1: 0.4615384615384615,
2: 0.49999999999999994}
# this test confirms that all palettes load properly.
def test_roc_palette(self):
[_roc_palette(p, 3) for p in _custom_palettes().keys()]
def test_roc_per_class(self):
fpr, tdr, roc_auc = _roc_per_class(self.md, self.probs, [0, 1, 2])
for d, e in zip([fpr, tdr, roc_auc],
[self.exp_fpr, self.exp_tdr, self.exp_roc_auc]):
for c in [0, 1, 2]:
np.testing.assert_array_almost_equal(d[c], e[c])
def test_roc_micro_average(self):
fpr, tdr, roc_auc = _roc_micro_average(
self.md, self.probs, self.exp_fpr, self.exp_tdr, self.exp_roc_auc)
np.testing.assert_array_almost_equal(fpr['micro'], np.array(
[0., 0.025, 0.025, 0.075, 0.075, 0.1, 0.1, 0.225, 0.225, 0.275,
0.275, 0.475, 0.475, 0.575, 0.575, 0.6, 0.6, 0.65, 0.65, 0.675,
0.675, 0.725, 0.725, 0.75, 0.75, 0.825, 0.825, 0.925, 0.925, 1.,
1.]))
np.testing.assert_array_almost_equal(tdr['micro'], np.array(
[0., 0., 0.05, 0.05, 0.1, 0.1, 0.15, 0.15, 0.2, 0.2, 0.25, 0.25,
0.35, 0.35, 0.4, 0.4, 0.45, 0.45, 0.5, 0.5, 0.55, 0.55, 0.6, 0.6,
0.75, 0.75, 0.8, 0.8, 0.95, 0.95, 1.]))
self.assertAlmostEqual(roc_auc['micro'], 0.41374999999999995)
def test_roc_macro_average(self):
fpr, tdr, roc_auc = _roc_macro_average(
self.exp_fpr, self.exp_tdr, self.exp_roc_auc, [0, 1, 2])
np.testing.assert_array_almost_equal(fpr['macro'], np.array(
[0., 0.07142857, 0.07692308, 0.14285714, 0.15384615, 0.46153846,
0.61538462, 0.69230769, 0.76923077, 0.78571429, 0.84615385,
0.92857143, 1.]))
np.testing.assert_array_almost_equal(tdr['macro'], np.array(
[0.04761905, 0.1031746, 0.1031746, 0.21428571, 0.26190476,
0.45238095, 0.54761905, 0.64285714, 0.69047619, 0.74603175,
0.7936508, 0.90476191, 1.]))
self.assertAlmostEqual(roc_auc['macro'], 0.49930228548098726)
# Proves that the ROC nuts + bolts work if predictions does not have all
# the classes present in probabilities. This will occur if there are many
# classes or few samples and the data are not stratified:
# https://github.com/qiime2/q2-sample-classifier/issues/171
def test_binarize_and_roc_on_missing_classes(self):
# seven samples with only 4 classes (adeh) of 8 possible classes
# (abcdefgh) represented
md = pd.Series([i for i in 'hedhadd'])
# array of 7 samples X 8 classes
# the values do not matter, only the labels
probs = pd.DataFrame(np.random.rand(7, 8),
columns=[i for i in 'abcdefgh'])
_generate_roc_plots(md, probs, 'GreenBlue')
class TestBinarize(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
def test_binarize_labels_binary(self):
md = pd.Series([c for c in 'aabbaa'])
labels = _binarize_labels(md, ['a', 'b'])
exp = np.array([[1, 0], [1, 0], [0, 1], [0, 1], [1, 0], [1, 0]])
np.testing.assert_array_equal(exp, labels)
def test_binarize_labels_multiclass(self):
md = pd.Series([c for c in 'abcabc'])
labels = _binarize_labels(md, ['a', 'b', 'c'])
exp = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1],
[1, 0, 0], [0, 1, 0], [0, 0, 1]])
np.testing.assert_array_equal(exp, labels)
|