1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import os
import pandas as pd
import pandas.testing as pdt
import biom
import shutil
import json
import numpy as np
from sklearn.metrics import mean_squared_error, accuracy_score
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import Pipeline
import skbio
import qiime2
from q2_types.feature_table import (FeatureTable, PercentileNormalized)
from qiime2.plugins import sample_classifier
from q2_sample_classifier.tests.test_base_class import \
SampleClassifierTestPluginBase
from q2_sample_classifier.classify import (
regress_samples_ncv, classify_samples_ncv, fit_classifier, fit_regressor,
detect_outliers, split_table, predict_classification,
predict_regression)
from q2_sample_classifier.utilities import (
_set_parameters_and_estimator, _train_adaboost_base_estimator,
_match_series_or_die, _extract_features)
from q2_sample_classifier import (
SampleEstimatorDirFmt, PickleFormat)
class SampleEstimatorTestBase(SampleClassifierTestPluginBase):
package = 'q2_sample_classifier.tests'
def setUp(self):
super().setUp()
def _load_biom(table_fp):
table_fp = self.get_data_path(table_fp)
table = qiime2.Artifact.load(table_fp)
table = table.view(biom.Table)
return table
def _load_cmc(md_fp, column):
md_fp = self.get_data_path(md_fp)
md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0)
md = qiime2.CategoricalMetadataColumn(md[column])
return md
table_chard_fp = _load_biom('chardonnay.table.qza')
mdc_chard_fp = _load_cmc('chardonnay.map.txt', 'Region')
pipeline, importances = fit_classifier(
table_chard_fp, mdc_chard_fp, random_state=123,
n_estimators=2, n_jobs=1, optimize_feature_selection=True,
parameter_tuning=True, missing_samples='ignore')
transformer = self.get_transformer(
Pipeline, SampleEstimatorDirFmt)
self._sklp = transformer(pipeline)
sklearn_pipeline = self._sklp.sklearn_pipeline.view(PickleFormat)
self.sklearn_pipeline = str(sklearn_pipeline)
self.pipeline = pipeline
def _custom_setup(self, version):
with open(os.path.join(self.temp_dir.name,
'sklearn_version.json'), 'w') as fh:
fh.write(json.dumps({'sklearn-version': version}))
shutil.copy(self.sklearn_pipeline, self.temp_dir.name)
return SampleEstimatorDirFmt(
self.temp_dir.name, mode='r')
class EstimatorsTests(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
def _load_biom(table_fp):
table_fp = self.get_data_path(table_fp)
table = qiime2.Artifact.load(table_fp)
table = table.view(biom.Table)
return table
def _load_md(md_fp):
md_fp = self.get_data_path(md_fp)
md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0)
md = qiime2.Metadata(md)
return md
def _load_nmc(md_fp, column):
md_fp = self.get_data_path(md_fp)
md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0)
md = qiime2.NumericMetadataColumn(md[column])
return md
def _load_cmc(md_fp, column):
md_fp = self.get_data_path(md_fp)
md = pd.read_csv(md_fp, sep='\t', header=0, index_col=0)
md = qiime2.CategoricalMetadataColumn(md[column])
return md
self.table_chard_fp = _load_biom('chardonnay.table.qza')
self.md_chard_fp = _load_md('chardonnay.map.txt')
self.mdc_chard_fp = _load_cmc('chardonnay.map.txt', 'Region')
self.table_ecam_fp = _load_biom('ecam-table-maturity.qza')
self.md_ecam_fp = _load_md('ecam_map_maturity.txt')
self.mdc_ecam_fp = _load_nmc('ecam_map_maturity.txt', 'month')
self.exp_imp = pd.read_csv(
self.get_data_path('importance.tsv'), sep='\t', header=0,
index_col=0, names=['feature', 'importance'])
self.exp_pred = pd.read_csv(
self.get_data_path('predictions.tsv'), sep='\t', header=0,
index_col=0).squeeze('columns')
index = pd.Index(['A', 'B', 'C', 'D'], name='id')
self.table_percnorm = qiime2.Artifact.import_data(
FeatureTable[PercentileNormalized], pd.DataFrame(
[[20.0, 20.0, 50.0, 10.0], [10.0, 10.0, 70.0, 10.0],
[90.0, 8.0, 1.0, 1.0], [30.0, 15.0, 20.0, 35.0]],
index=index,
columns=['feat1', 'feat2', 'feat3', 'feat4'])).view(biom.Table)
self.mdc_percnorm = qiime2.CategoricalMetadataColumn(
pd.Series(['X', 'X', 'Y', 'Y'], index=index, name='name'))
# test feature extraction
def test_extract_features(self):
table = self.table_ecam_fp
dicts = _extract_features(table)
dv = DictVectorizer()
dv.fit(dicts)
features = table.ids('observation')
self.assertEqual(set(dv.get_feature_names_out()), set(features))
self.assertEqual(len(dicts), len(table.ids()))
for dict_row, (table_row, _, _) in zip(dicts, table.iter()):
for feature, count in zip(features, table_row):
if count == 0:
self.assertTrue(feature not in dict_row)
else:
self.assertEqual(dict_row[feature], count)
def test_classify_samples_from_dist(self):
# -- setup -- #
# 1,2 are a group, 3,4 are a group
sample_ids = ('f1', 'f2', 's1', 's2')
distance_matrix = skbio.DistanceMatrix([
[0, 1, 4, 4],
[1, 0, 4, 4],
[4, 4, 0, 1],
[4, 4, 1, 0],
], ids=sample_ids)
dm = qiime2.Artifact.import_data('DistanceMatrix', distance_matrix)
categories = pd.Series(('skinny', 'skinny', 'fat', 'fat'),
index=sample_ids[::-1], name='body_mass')
categories.index.name = 'SampleID'
metadata = qiime2.CategoricalMetadataColumn(categories)
# -- test -- #
res = sample_classifier.actions.classify_samples_from_dist(
distance_matrix=dm, metadata=metadata, k=1, cv=3, random_state=123
)
pred = res[0].view(pd.Series).sort_values()
expected = pd.Series(('fat', 'skinny', 'fat', 'skinny'),
index=['f1', 's1', 'f2', 's2'])
not_expected = pd.Series(('fat', 'fat', 'fat', 'skinny'),
index=sample_ids)
# order matters for pd.Series.equals()
self.assertTrue(expected.sort_index().equals(pred.sort_index()))
self.assertFalse(not_expected.sort_index().equals(pred.sort_index()))
def test_classify_samples_from_dist_with_group_of_single_item(self):
# -- setup -- #
# 1 is a group, 2,3,4 are a group
sample_ids = ('f1', 's1', 's2', 's3')
distance_matrix = skbio.DistanceMatrix([
[0, 2, 3, 3],
[2, 0, 1, 1],
[3, 1, 0, 1],
[3, 1, 1, 0],
], ids=sample_ids)
dm = qiime2.Artifact.import_data('DistanceMatrix', distance_matrix)
categories = pd.Series(('fat', 'skinny', 'skinny', 'skinny'),
index=sample_ids, name='body_mass')
categories.index.name = 'SampleID'
metadata = qiime2.CategoricalMetadataColumn(categories)
# -- test -- #
res = sample_classifier.actions.classify_samples_from_dist(
distance_matrix=dm, metadata=metadata, k=1, cv=3, random_state=123
)
pred = res[0].view(pd.Series)
expected = pd.Series(('skinny', 'skinny', 'skinny', 'skinny'),
index=sample_ids)
self.assertTrue(expected.sort_index().equals(pred.sort_index()))
def test_2nn(self):
# -- setup -- #
# 2 nearest neighbors of each sample are
# f1: s1, s2 (classified as skinny)
# s1: f1, s2 (closer to f1 so fat)
# s2: f1, (s1 or s3) (closer to f1 so fat)
# s3: s1, s2 (skinny)
sample_ids = ('f1', 's1', 's2', 's3')
distance_matrix = skbio.DistanceMatrix([
[0, 2, 1, 5],
[2, 0, 3, 4],
[1, 3, 0, 3],
[5, 4, 3, 0],
], ids=sample_ids)
dm = qiime2.Artifact.import_data('DistanceMatrix', distance_matrix)
categories = pd.Series(('fat', 'skinny', 'skinny', 'skinny'),
index=sample_ids, name='body_mass')
categories.index.name = 'SampleID'
metadata = qiime2.CategoricalMetadataColumn(categories)
# -- test -- #
res = sample_classifier.actions.classify_samples_from_dist(
distance_matrix=dm, metadata=metadata, k=2, cv=3, random_state=123
)
pred = res[0].view(pd.Series)
expected = pd.Series(('skinny', 'fat', 'fat', 'skinny'),
index=sample_ids)
self.assertTrue(expected.sort_index().equals(pred.sort_index()))
# test that each classifier works and delivers an expected accuracy result
# when a random seed is set.
def test_classifiers(self):
for classifier in ['RandomForestClassifier', 'ExtraTreesClassifier',
'GradientBoostingClassifier',
'AdaBoostClassifier[DecisionTree]',
'AdaBoostClassifier[ExtraTrees]', 'LinearSVC',
'SVC', 'KNeighborsClassifier']:
table_fp = self.get_data_path('chardonnay.table.qza')
table = qiime2.Artifact.load(table_fp)
res = sample_classifier.actions.classify_samples(
table=table, metadata=self.mdc_chard_fp,
test_size=0.5, cv=1, n_estimators=10, n_jobs=1,
estimator=classifier, random_state=123,
parameter_tuning=False, optimize_feature_selection=False,
missing_samples='ignore')
pred = res[2].view(pd.Series)
pred, truth = _match_series_or_die(
pred, self.mdc_chard_fp.to_series(), 'ignore')
accuracy = accuracy_score(truth, pred)
self.assertAlmostEqual(
accuracy, seeded_results[classifier],
msg='Accuracy of %s classifier was %f, but expected %f' % (
classifier, accuracy, seeded_results[classifier]), delta=0.1)
# test if training classifier with pipeline classify_samples raises
# warning when test_size = 0.0
def test_classify_samples_w_all_train_set(self):
with self.assertWarnsRegex(Warning, "not representative of "
"your model's performance"):
table_fp = self.get_data_path('chardonnay.table.qza')
table = qiime2.Artifact.load(table_fp)
sample_classifier.actions.classify_samples(
table=table, metadata=self.mdc_chard_fp,
test_size=0.0, cv=1, n_estimators=10, n_jobs=1,
estimator='RandomForestClassifier', random_state=123,
parameter_tuning=False, optimize_feature_selection=False,
missing_samples='ignore')
# test that the plugin methods/visualizers work
def test_regress_samples_ncv(self):
y_pred, importances = regress_samples_ncv(
self.table_ecam_fp, self.mdc_ecam_fp, random_state=123,
n_estimators=2, n_jobs=1, stratify=True, parameter_tuning=True,
missing_samples='ignore')
def test_classify_samples_ncv(self):
y_pred, importances, probabilities = classify_samples_ncv(
self.table_chard_fp, self.mdc_chard_fp, random_state=123,
n_estimators=2, n_jobs=1, missing_samples='ignore')
# test reproducibility of classifier results, probabilities
def test_classify_samples_ncv_accuracy(self):
dat = biom.Table(np.array(
[[4446, 9828, 3208, 776, 118, 4175, 657, 251, 7505, 617],
[1855, 8716, 3257, 1251, 3205, 2557, 4251, 7405, 1417, 1215],
[6616, 281, 8616, 291, 261, 253, 9075, 252, 7385, 4068]]),
observation_ids=['o1', 'o2', 'o3'],
sample_ids=['s1', 's2', 's3', 's4', 's5',
's6', 's7', 's8', 's9', 's10'])
md = qiime2.CategoricalMetadataColumn(pd.Series(
['red', 'red', 'red', 'red', 'red',
'blue', 'blue', 'blue', 'blue', 'blue'],
index=pd.Index(['s1', 's2', 's3', 's4', 's5',
's6', 's7', 's8', 's9', 's10'],
name='sample-id'), name='color'))
y_pred, importances, probabilities = classify_samples_ncv(
dat, md, random_state=123, n_estimators=2, n_jobs=1,
missing_samples='ignore')
exp_pred = pd.Series(
['blue', 'red', 'red', 'blue', 'blue',
'blue', 'blue', 'red', 'blue', 'blue'],
index=pd.Index(['s4', 's6', 's1', 's10', 's5', 's8', 's2', 's9',
's3', 's7'], dtype='object', name='SampleID'),
name='prediction')
exp_importances = pd.DataFrame(
[0.595111111111111, 0.23155555555555551, 0.17333333333333334],
index=pd.Index(['o3', 'o1', 'o2'], name='feature'),
columns=['importance'])
exp_probabilities = pd.DataFrame(
[[0.5, 0.5], [0., 1.], [0., 1.], [0.5, 0.5], [0.5, 0.5],
[0.5, 0.5], [0.5, 0.5], [0., 1.], [1., 0.], [1., 0.]],
index=pd.Index(['s4', 's6', 's1', 's10', 's5', 's8', 's2', 's9',
's3', 's7'], name='SampleID'),
columns=['blue', 'red'])
pdt.assert_series_equal(y_pred, exp_pred)
pdt.assert_frame_equal(importances, exp_importances)
pdt.assert_frame_equal(probabilities, exp_probabilities)
# test ncv a second time with KNeighborsRegressor (no feature importance)
def test_regress_samples_ncv_knn(self):
y_pred, importances = regress_samples_ncv(
self.table_ecam_fp, self.mdc_ecam_fp, random_state=123,
n_estimators=2, n_jobs=1, stratify=False, parameter_tuning=False,
estimator='KNeighborsRegressor', missing_samples='ignore')
# test that ncv gives expected results
def test_regress_samples_ncv_accuracy(self):
y_pred, importances = regress_samples_ncv(
self.table_ecam_fp, self.mdc_ecam_fp, random_state=123,
n_estimators=2, n_jobs=1, missing_samples='ignore')
pdt.assert_series_equal(y_pred, self.exp_pred)
pdt.assert_frame_equal(importances, self.exp_imp)
# test that fit_* methods output consistent importance scores
def test_fit_regressor(self):
pipeline, importances = fit_regressor(
self.table_ecam_fp, self.mdc_ecam_fp, random_state=123,
n_estimators=2, n_jobs=1, missing_samples='ignore')
exp_imp = pd.read_csv(
self.get_data_path('importance_cv.tsv'), sep='\t', header=0,
index_col=0)
pdt.assert_frame_equal(importances, exp_imp)
# just make sure this method runs. Uses the same internal function as
# fit_regressor, so importance score consistency is covered by the above
# test.
def test_fit_classifier(self):
pipeline, importances = fit_classifier(
self.table_ecam_fp, self.mdc_ecam_fp, random_state=123,
n_estimators=2, n_jobs=1, optimize_feature_selection=True,
parameter_tuning=True, missing_samples='ignore')
# test that each regressor works and delivers an expected accuracy result
# when a random seed is set.
def test_regressors(self):
for regressor in ['RandomForestRegressor', 'ExtraTreesRegressor',
'GradientBoostingRegressor',
'AdaBoostRegressor[DecisionTree]',
'AdaBoostRegressor[ExtraTrees]', 'Lasso', 'Ridge',
'ElasticNet', 'KNeighborsRegressor', 'LinearSVR',
'SVR']:
table_fp = self.get_data_path('ecam-table-maturity.qza')
table = qiime2.Artifact.load(table_fp)
res = sample_classifier.actions.regress_samples(
table=table, metadata=self.mdc_ecam_fp,
test_size=0.5, cv=1, n_estimators=10, n_jobs=1,
estimator=regressor, random_state=123,
parameter_tuning=False, optimize_feature_selection=False,
missing_samples='ignore', stratify=True)
pred = res[2].view(pd.Series)
pred, truth = _match_series_or_die(
pred, self.mdc_ecam_fp.to_series(), 'ignore')
accuracy = mean_squared_error(truth, pred)
# TODO: Remove this conditional when
# https://github.com/qiime2/q2-sample-classifier/issues/193 is
# closed
if regressor == 'Ridge':
self.assertAlmostEqual(
accuracy, seeded_results[regressor], places=0,
msg='Accuracy of %s regressor was %f, but expected %f' % (
regressor, accuracy, seeded_results[regressor]))
else:
self.assertAlmostEqual(
accuracy, seeded_results[regressor], places=2,
msg='Accuracy of %s regressor was %f, but expected %f' % (
regressor, accuracy, seeded_results[regressor]))
# test adaboost base estimator trainer
def test_train_adaboost_decision_tree(self):
abe = _train_adaboost_base_estimator(
self.table_chard_fp, self.mdc_chard_fp, 'Region',
n_estimators=10, n_jobs=1, cv=3, random_state=None,
parameter_tuning=True, classification=True,
missing_samples='ignore', base_estimator="DecisionTree")
self.assertEqual(type(abe.named_steps.est), AdaBoostClassifier)
self.assertEqual(type(abe.named_steps.est.estimator),
DecisionTreeClassifier)
def test_train_adaboost_extra_trees(self):
abe = _train_adaboost_base_estimator(
self.table_chard_fp, self.mdc_chard_fp, 'Region',
n_estimators=10, n_jobs=1, cv=3, random_state=None,
parameter_tuning=True, classification=True,
missing_samples='ignore', base_estimator="ExtraTrees")
self.assertEqual(type(abe.named_steps.est), AdaBoostClassifier)
self.assertEqual(type(abe.named_steps.est.estimator),
ExtraTreeClassifier)
# test some invalid inputs/edge cases
def test_invalids(self):
estimator, pad, pt = _set_parameters_and_estimator(
'RandomForestClassifier', self.table_chard_fp, self.md_chard_fp,
'Region', n_estimators=10, n_jobs=1, cv=1,
random_state=123, parameter_tuning=False, classification=True,
missing_samples='ignore')
regressor, pad, pt = _set_parameters_and_estimator(
'RandomForestRegressor', self.table_chard_fp, self.md_chard_fp,
'Region', n_estimators=10, n_jobs=1, cv=1,
random_state=123, parameter_tuning=False, classification=True,
missing_samples='ignore')
def test_split_table_no_rounding_error(self):
X_train, X_test, y_train, y_test = split_table(
self.table_chard_fp, self.mdc_chard_fp, test_size=0.5,
random_state=123, stratify=True, missing_samples='ignore')
self.assertEqual(len(X_train.ids()) + len(X_test.ids()), 21)
self.assertEqual(y_train.shape[0] + y_test.shape[0], 21)
def test_split_table_no_split(self):
X_train, X_test, y_train, y_test = split_table(
self.table_chard_fp, self.mdc_chard_fp, test_size=0.0,
random_state=123, stratify=True, missing_samples='ignore')
self.assertEqual(len(X_train.ids()), 21)
self.assertEqual(y_train.shape[0], 21)
def test_split_table_invalid_test_size(self):
with self.assertRaisesRegex(ValueError, "at least two samples"):
X_train, X_test, y_train, y_test = split_table(
self.table_chard_fp, self.mdc_chard_fp, test_size=1.0,
random_state=123, stratify=True, missing_samples='ignore')
def test_split_table_percnorm(self):
X_train, X_test, y_train, y_test = split_table(
self.table_percnorm, self.mdc_percnorm, test_size=0.5,
random_state=123, stratify=True, missing_samples='ignore')
self.assertEqual(len(X_train.ids()) + len(X_test.ids()), 4)
self.assertEqual(y_train.shape[0] + y_test.shape[0], 4)
# test experimental functions
def test_detect_outliers(self):
detect_outliers(self.table_chard_fp, self.md_chard_fp,
random_state=123, n_jobs=1, contamination=0.05)
def test_detect_outliers_with_subsets(self):
detect_outliers(self.table_chard_fp, self.md_chard_fp,
random_state=123, n_jobs=1, contamination=0.05,
subset_column='Vineyard', subset_value=1)
def test_detect_outliers_raise_error_on_missing_subset_data(self):
with self.assertRaisesRegex(ValueError, "must both be provided"):
detect_outliers(self.table_chard_fp, self.md_chard_fp,
random_state=123, n_jobs=1, contamination=0.05,
subset_column='Vineyard', subset_value=None)
with self.assertRaisesRegex(ValueError, "must both be provided"):
detect_outliers(self.table_chard_fp, self.md_chard_fp,
random_state=123, n_jobs=1, contamination=0.05,
subset_column=None, subset_value=1)
# just test that this works by making sure a classifier trained on samples
# x, y, and z predicts the correct metadata values for those same samples.
def test_predict_classifications(self):
for classifier in ['RandomForestClassifier', 'ExtraTreesClassifier',
'GradientBoostingClassifier',
'AdaBoostClassifier[DecisionTree]',
'AdaBoostClassifier[ExtraTrees]', 'LinearSVC',
'SVC', 'KNeighborsClassifier']:
estimator, importances = fit_classifier(
self.table_chard_fp, self.mdc_chard_fp, random_state=123,
n_estimators=2, estimator=classifier, n_jobs=1,
missing_samples='ignore')
pred, prob = predict_classification(self.table_chard_fp, estimator)
exp = self.mdc_chard_fp.to_series().reindex(pred.index).dropna()
# reindex both pred and exp because not all samples present in pred
# are present in the metadata! (hence missing_samples='ignore')
sample_ids = pred.index.intersection(exp.index)
pred = pred.loc[sample_ids]
exp = exp.loc[sample_ids]
# verify predictions:
# test that expected number of correct results is achieved (these
# are mostly quite high as we would expect (total n=21))
correct_results = np.sum(pred == exp)
self.assertEqual(
correct_results, seeded_predict_results[classifier],
msg='Accuracy of %s classifier was %f, but expected %f' % (
classifier, correct_results,
seeded_predict_results[classifier]))
# verify probabilities
# test whether all are in correct range (0 to 1)
ls_pred_classes = prob.columns.tolist()
ls_correct_range = [col for col in ls_pred_classes if
prob[col].between(
0, 1, inclusive="both").all()]
self.assertEqual(len(ls_correct_range), prob.shape[1],
msg='Predicted probabilities of class {}'
'are not in range [0,1]'.format(
[col for col in ls_pred_classes
if col not in ls_correct_range]))
def test_predict_regressions(self):
for regressor in ['RandomForestRegressor', 'ExtraTreesRegressor',
'GradientBoostingRegressor',
'AdaBoostRegressor[DecisionTree]',
'AdaBoostRegressor[ExtraTrees]',
'Lasso', 'Ridge', 'ElasticNet',
'KNeighborsRegressor', 'SVR', 'LinearSVR']:
estimator, importances = fit_regressor(
self.table_ecam_fp, self.mdc_ecam_fp, random_state=123,
n_estimators=2, estimator=regressor, n_jobs=1,
missing_samples='ignore')
pred = predict_regression(self.table_ecam_fp, estimator)
exp = self.mdc_ecam_fp.to_series()
# reindex both pred and exp because not all samples present in pred
# are present in the metadata! (hence missing_samples='ignore')
sample_ids = pred.index.intersection(exp.index)
pred = pred.loc[sample_ids]
exp = exp.loc[sample_ids]
# test that expected MSE is achieved (these are mostly quite high
# as we would expect)
mse = mean_squared_error(exp, pred)
# TODO: Remove this conditional when
# https://github.com/qiime2/q2-sample-classifier/issues/193 is
# closed
if regressor == 'Ridge':
self.assertAlmostEqual(
mse, seeded_predict_results[regressor], places=4,
msg='Accuracy of %s regressor was %f, but expected %f' % (
regressor, mse, seeded_predict_results[regressor]))
else:
self.assertAlmostEqual(
mse, seeded_predict_results[regressor],
msg='Accuracy of %s regressor was %f, but expected %f' % (
regressor, mse, seeded_predict_results[regressor]), delta=0.001)
# make sure predict still works when features are given in a different
# order from training set.
def test_predict_feature_order_aint_no_thing(self):
table = self.table_ecam_fp
estimator, importances = fit_regressor(
table, self.mdc_ecam_fp, random_state=123, n_estimators=2,
n_jobs=1, missing_samples='ignore')
# randomly shuffle and reorder features in biom table.
feature_ids = table.ids(axis='observation')
# look ma no seed! we should get the same result no matter the order.
np.random.shuffle(feature_ids)
shuffled_table = table.sort_order(feature_ids, axis='observation')
# now predict values on shuffled data
pred = predict_regression(shuffled_table, estimator)
exp = self.mdc_ecam_fp.to_series()
# reindex both pred and exp because not all samples present in pred
# are present in the metadata! (hence missing_samples='ignore')
sample_ids = pred.index.intersection(exp.index)
pred = pred.loc[sample_ids]
exp = exp.loc[sample_ids]
# test that expected MSE is achieved (these are mostly quite high
# as we would expect)
mse = mean_squared_error(exp, pred)
self.assertAlmostEqual(
mse, seeded_predict_results['RandomForestRegressor'])
seeded_results = {
'RandomForestClassifier': 0.63636363636363635,
'ExtraTreesClassifier': 0.454545454545,
'GradientBoostingClassifier': 0.272727272727,
'AdaBoostClassifier[DecisionTree]': 0.272727272727,
'AdaBoostClassifier[ExtraTrees]': 0.272727272727,
'LinearSVC': 0.818182,
'SVC': 0.36363636363636365,
'KNeighborsClassifier': 0.363636363636,
'RandomForestRegressor': 23.226508,
'ExtraTreesRegressor': 19.725397,
'GradientBoostingRegressor': 34.157100,
'AdaBoostRegressor[DecisionTree]': 30.920635,
'AdaBoostRegressor[ExtraTrees]': 21.746031,
'Lasso': 722.827623,
'Ridge': 521.195194222418,
'ElasticNet': 618.532273,
'KNeighborsRegressor': 44.7847619048,
'LinearSVR': 511.816385601,
'SVR': 51.325146}
seeded_predict_results = {
'RandomForestClassifier': 18,
'ExtraTreesClassifier': 21,
'GradientBoostingClassifier': 21,
'AdaBoostClassifier[DecisionTree]': 21,
'AdaBoostClassifier[ExtraTrees]': 21,
'LinearSVC': 21,
'SVC': 12,
'KNeighborsClassifier': 14,
'RandomForestRegressor': 7.4246031746,
'ExtraTreesRegressor': 0.,
'GradientBoostingRegressor': 50.1955883469,
'AdaBoostRegressor[DecisionTree]': 9.7857142857142865,
'AdaBoostRegressor[ExtraTrees]': 33.95238095238095,
'Lasso': 0.173138653701,
'Ridge': 2.694020055323081e-05,
'ElasticNet': 0.0614243397637,
'KNeighborsRegressor': 26.8625396825,
'SVR': 37.86704865859832,
'LinearSVR': 0.0099912565770459132}
|