1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
import pandas as pd
import pandas.testing as pdt
from os import mkdir, listdir
from os.path import join
import biom
import qiime2
from qiime2.plugins import sample_classifier
from q2_sample_classifier.visuals import (
_linear_regress, _calculate_baseline_accuracy,
_add_sample_size_to_xtick_labels)
from q2_sample_classifier.classify import (
scatterplot, confusion_matrix)
from q2_sample_classifier.utilities import (
_match_series_or_die, _predict_and_plot)
from q2_sample_classifier.tests.test_base_class import \
SampleClassifierTestPluginBase
class TestVisuals(SampleClassifierTestPluginBase):
md = pd.DataFrame([(1, 'a', 0.11), (1, 'a', 0.12), (1, 'a', 0.13),
(2, 'a', 0.19), (2, 'a', 0.18), (2, 'a', 0.21),
(1, 'b', 0.14), (1, 'b', 0.13), (1, 'b', 0.14),
(2, 'b', 0.26), (2, 'b', 0.27), (2, 'b', 0.29)],
columns=['Time', 'Group', 'Value'])
def test_linear_regress(self):
res = _linear_regress(self.md['Value'], self. md['Time'])
self.assertAlmostEqual(res.iloc[0]['Mean squared error'], 1.9413916666)
self.assertAlmostEqual(res.iloc[0]['r-value'], 0.86414956372460128)
self.assertAlmostEqual(res.iloc[0]['r-squared'], 0.74675446848541871)
self.assertAlmostEqual(res.iloc[0]['P-value'], 0.00028880275858705694)
def test_calculate_baseline_accuracy(self):
accuracy = 0.9
y_test = pd.Series(['a', 'a', 'a', 'b', 'b', 'b'], name="class")
classifier_accuracy = _calculate_baseline_accuracy(y_test, accuracy)
expected_results = (6, 3, 0.5, 1.8)
for i in zip(classifier_accuracy, expected_results):
self.assertEqual(i[0], i[1])
class TestHeatmap(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
md_vaw = self.get_data_path('vaw.txt')
md_vaw = qiime2.Metadata.load(md_vaw)
self.md_vaw = md_vaw.get_column('Column')
table_vaw = self.get_data_path('vaw.qza')
self.table_vaw = qiime2.Artifact.load(table_vaw)
imp = pd.read_csv(
self.get_data_path('vaw_importance.tsv'), sep='\t',
header=0, index_col=0)
self.imp = qiime2.Artifact.import_data('FeatureData[Importance]', imp)
def test_heatmap_default_feature_count_zero(self):
heatmap, table, = sample_classifier.actions.heatmap(
self.table_vaw, self.imp, self.md_vaw, group_samples=True,
feature_count=0)
self.assertEqual(table.view(biom.Table).shape, (5, 2))
def test_heatmap_importance_threshold(self):
heatmap, table, = sample_classifier.actions.heatmap(
self.table_vaw, self.imp, self.md_vaw,
importance_threshold=0.062, group_samples=False, feature_count=0)
self.assertEqual(table.view(biom.Table).shape, (3, 6))
def test_heatmap_feature_count(self):
heatmap, table, = sample_classifier.actions.heatmap(
self.table_vaw, self.imp, self.md_vaw, group_samples=True,
feature_count=2)
self.assertEqual(table.view(biom.Table).shape, (2, 2))
def test_heatmap_must_group_or_die(self):
with self.assertRaisesRegex(ValueError, "metadata are not optional"):
heatmap, table, = sample_classifier.actions.heatmap(
self.table_vaw, self.imp, sample_metadata=None,
group_samples=True)
# This class really just checks that these visualizers run without error. Yay.
# Also test some internal nuts/bolts but there's not much else we can do.
class TestPlottingVisualizers(SampleClassifierTestPluginBase):
def setUp(self):
super().setUp()
self.tmpd = join(self.temp_dir.name, 'viz')
mkdir(self.tmpd)
self.a = pd.Series(['a', 'a', 'b', 'b', 'c', 'c'], name='site',
index=['a1', 'a2', 'b1', 'b2', 'c1', 'c2'])
self.a.index.name = 'SampleID'
self.bogus = pd.Series(['a', 'a', 'b', 'b', 'c', 'c'], name='site',
index=['a1', 'e3', 'f5', 'b2', 'z1', 'c2'])
self.bogus.index.name = 'SampleID'
self.c = pd.Series(
[0, 1, 2, 3], index=['a', 'b', 'c', 'd'], name='peanuts')
self.c.index.name = 'SampleID'
def test_confusion_matrix(self):
b = qiime2.CategoricalMetadataColumn(self.a)
confusion_matrix(self.tmpd, self.a, b)
def test_confusion_matrix_class_overlap_error(self):
b = pd.Series([1, 2, 3, 4, 5, 6], name='site',
index=['a1', 'a2', 'b1', 'b2', 'c1', 'c2'])
b.index.name = 'id'
b = qiime2.NumericMetadataColumn(b)
with self.assertRaisesRegex(ValueError, "do not overlap"):
confusion_matrix(self.tmpd, self.a, b)
def test_confusion_matrix_vmin_too_high(self):
b = qiime2.CategoricalMetadataColumn(self.a)
with self.assertRaisesRegex(ValueError, r'vmin must be less than.*\s\s'
r'0\.5.*greater.*0\.0'):
confusion_matrix(self.tmpd, self.a, b, vmin=.5, vmax=None)
def test_confusion_matrix_vmax_too_low(self):
b = qiime2.CategoricalMetadataColumn(self.a)
with self.assertRaisesRegex(ValueError, r'vmax must be greater than.*'
r'\s\s0\.5.*less.*1\.0'):
confusion_matrix(self.tmpd, self.a, b, vmin=None, vmax=.5)
def test_confusion_matrix_vmin_too_high_and_vmax_too_low(self):
b = qiime2.CategoricalMetadataColumn(self.a)
with self.assertRaisesRegex(ValueError, r'vmin must be less than.*\s'
r'\s0\.5.*greater.*0\.0\s.*vmax must be '
r'greater than.*\s\s0\.5.*less.*1\.0'):
confusion_matrix(self.tmpd, self.a, b, vmin=.5, vmax=.5)
def test_confusion_matrix_dtype_coercion(self):
predictions = pd.Series([1, 1, 1, 2, 2, 2],
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'],
name='sample_id'), name='features')
# NOTE: the targets are numbers but represented as str
truth = qiime2.CategoricalMetadataColumn(pd.Series(
['1', '2', '1', '2', '1', '2'],
index=pd.Index(['a', 'b', 'c', 'd', 'e', 'f'], name='sample-id'),
name='target'))
confusion_matrix(self.tmpd, predictions, truth)
self.assertTrue('index.html' in listdir(self.tmpd))
# test confusion matrix plotting independently to see how it handles
# partially overlapping classes when true labels are superset
def test_predict_and_plot_true_labels_are_superset(self):
b = pd.Series(['a', 'a', 'b', 'b', 'b', 'b'], name='site',
index=['a1', 'a2', 'b1', 'b2', 'c1', 'c2'])
exp = pd.DataFrame(
[[1., 0., 0., ''],
[0., 1., 0., ''],
[0., 1., 0., ''],
['', '', '', 0.666666666],
['', '', '', 0.3333333333],
['', '', '', 2.]],
columns=['a', 'b', 'c', 'Overall Accuracy'],
index=['a', 'b', 'c', 'Overall Accuracy', 'Baseline Accuracy',
'Accuracy Ratio'])
predictions, confusion = _predict_and_plot(self.tmpd, self.a, b)
pdt.assert_frame_equal(exp, predictions)
# test confusion matrix plotting independently to see how it handles
# partially overlapping classes when true labels are superset
def test_predict_and_plot_true_labels_are_subset(self):
b = pd.Series(['a', 'a', 'b', 'b', 'c', 'd'], name='site',
index=['a1', 'a2', 'b1', 'b2', 'c1', 'c2'])
exp = pd.DataFrame(
[[1., 0., 0., 0., ''],
[0., 1., 0., 0., ''],
[0., 0., 0.5, 0.5, ''],
[0., 0., 0., 0., ''],
['', '', '', '', 0.8333333333],
['', '', '', '', 0.3333333333],
['', '', '', '', 2.5]],
columns=['a', 'b', 'c', 'd', 'Overall Accuracy'],
index=['a', 'b', 'c', 'd', 'Overall Accuracy', 'Baseline Accuracy',
'Accuracy Ratio'])
predictions, confusion = _predict_and_plot(self.tmpd, self.a, b)
pdt.assert_frame_equal(exp, predictions)
# test confusion matrix plotting independently to see how it handles
# partially overlapping classes when true labels are mutually exclusive
def test_predict_and_plot_true_labels_are_mutually_exclusive(self):
b = pd.Series(['a', 'a', 'e', 'e', 'd', 'd'], name='site',
index=['a1', 'a2', 'b1', 'b2', 'c1', 'c2'])
exp = pd.DataFrame(
[[1., 0., 0., 0., 0., ''],
[0., 0., 0., 0., 1., ''],
[0., 0., 0., 1., 0., ''],
[0., 0., 0., 0., 0., ''],
[0., 0., 0., 0., 0., ''],
['', '', '', '', '', 0.3333333333],
['', '', '', '', '', 0.3333333333],
['', '', '', '', '', 1.]],
columns=['a', 'b', 'c', 'd', 'e', 'Overall Accuracy'],
index=['a', 'b', 'c', 'd', 'e', 'Overall Accuracy',
'Baseline Accuracy', 'Accuracy Ratio'])
predictions, confusion = _predict_and_plot(self.tmpd, self.a, b)
pdt.assert_frame_equal(exp, predictions)
def test_scatterplot(self):
b = qiime2.NumericMetadataColumn(self.c)
scatterplot(self.tmpd, self.c, b)
def test_add_sample_size_to_xtick_labels(self):
labels = _add_sample_size_to_xtick_labels(self.a, ['a', 'b', 'c'])
exp = ['a (n=2)', 'b (n=2)', 'c (n=2)']
self.assertListEqual(labels, exp)
# now test performance when extra classes are present
def test_add_sample_size_to_xtick_labels_extra_classes(self):
labels = _add_sample_size_to_xtick_labels(
self.a, [0, 'a', 'b', 'bb', 'c'])
exp = ['0 (n=0)', 'a (n=2)', 'b (n=2)', 'bb (n=0)', 'c (n=2)']
self.assertListEqual(labels, exp)
def test_match_series_or_die(self):
exp = pd.Series(['a', 'b', 'c'], name='site', index=['a1', 'b2', 'c2'])
exp.index.name = 'SampleID'
a, b = _match_series_or_die(self.a, self.bogus, 'ignore')
pdt.assert_series_equal(exp, a)
pdt.assert_series_equal(exp, b)
def test_match_series_or_die_missing_samples(self):
with self.assertRaisesRegex(ValueError, "Missing samples"):
a, b = _match_series_or_die(self.a, self.bogus, 'error')
|