1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
# ----------------------------------------------------------------------------
# Copyright (c) 2017-2023, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
from sklearn.metrics import (
mean_squared_error, confusion_matrix, accuracy_score, roc_curve, auc)
from sklearn.preprocessing import label_binarize
from itertools import cycle
from numpy import interp
import pandas as pd
import numpy as np
import seaborn as sns
from scipy.stats import linregress
import matplotlib.pyplot as plt
def _custom_palettes():
return {
'YellowOrangeBrown': 'YlOrBr',
'YellowOrangeRed': 'YlOrRd',
'OrangeRed': 'OrRd',
'PurpleRed': 'PuRd',
'RedPurple': 'RdPu',
'BluePurple': 'BuPu',
'GreenBlue': 'GnBu',
'PurpleBlue': 'PuBu',
'YellowGreen': 'YlGn',
'summer': 'summer_r',
'copper': 'copper_r',
'viridis': 'viridis_r',
'cividis': 'cividis_r',
'plasma': 'plasma_r',
'inferno': 'inferno_r',
'magma': 'magma_r',
'sirocco': sns.cubehelix_palette(
dark=0.15, light=0.95, as_cmap=True),
'drifting': sns.cubehelix_palette(
start=5, rot=0.4, hue=0.8, as_cmap=True),
'melancholy': sns.cubehelix_palette(
start=25, rot=0.4, hue=0.8, as_cmap=True),
'enigma': sns.cubehelix_palette(
start=2, rot=0.6, gamma=2.0, hue=0.7, dark=0.45, as_cmap=True),
'eros': sns.cubehelix_palette(start=0, rot=0.4, gamma=2.0, hue=2,
light=0.95, dark=0.5, as_cmap=True),
'spectre': sns.cubehelix_palette(
start=1.2, rot=0.4, gamma=2.0, hue=1, dark=0.4, as_cmap=True),
'ambition': sns.cubehelix_palette(start=2, rot=0.9, gamma=3.0, hue=2,
light=0.9, dark=0.5, as_cmap=True),
'mysteriousstains': sns.light_palette(
'baby shit green', input='xkcd', as_cmap=True),
'daydream': sns.blend_palette(
['egg shell', 'dandelion'], input='xkcd', as_cmap=True),
'solano': sns.blend_palette(
['pale gold', 'burnt umber'], input='xkcd', as_cmap=True),
'navarro': sns.blend_palette(
['pale gold', 'sienna', 'pine green'], input='xkcd', as_cmap=True),
'dandelions': sns.blend_palette(
['sage', 'dandelion'], input='xkcd', as_cmap=True),
'deepblue': sns.blend_palette(
['really light blue', 'petrol'], input='xkcd', as_cmap=True),
'verve': sns.cubehelix_palette(
start=1.4, rot=0.8, gamma=2.0, hue=1.5, dark=0.4, as_cmap=True),
'greyscale': sns.blend_palette(
['light grey', 'dark grey'], input='xkcd', as_cmap=True)}
def _regplot_from_dataframe(x, y, plot_style="whitegrid", arb=True,
color="grey"):
'''Seaborn regplot with true 1:1 ratio set by arb (bool).'''
sns.set_style(plot_style)
reg = sns.regplot(x=x, y=y, color=color)
plt.xlabel('True value')
plt.ylabel('Predicted value')
if arb is True:
x0, x1 = reg.axes.get_xlim()
y0, y1 = reg.axes.get_ylim()
lims = [min(x0, y0), max(x1, y1)]
reg.axes.plot(lims, lims, ':k')
return reg
def _linear_regress(actual, pred):
'''Calculate linear regression on predicted versus expected values.
actual: pandas.DataFrame
Actual y-values for test samples.
pred: pandas.DataFrame
Predicted y-values for test samples.
'''
slope, intercept, r_value, p_value, std_err = linregress(actual, pred)
mse = mean_squared_error(actual, pred)
return pd.DataFrame(
[(mse, r_value, r_value**2, p_value, std_err, slope, intercept)],
columns=["Mean squared error", "r-value", "r-squared", "P-value",
"Std Error", "Slope", "Intercept"],
index=[actual.name])
def _plot_heatmap_from_confusion_matrix(cm, palette, vmin=None, vmax=None):
palette = _custom_palettes()[palette]
plt.figure()
scaler, labelsize, dpi, cbar_min = 20, 8, 100, .15
sns.set(rc={'xtick.labelsize': labelsize, 'ytick.labelsize': labelsize,
'figure.dpi': dpi})
fig, (ax, cax) = plt.subplots(ncols=2, constrained_layout=True)
heatmap = sns.heatmap(cm, vmin=vmin, vmax=vmax, cmap=palette, ax=ax,
cbar_ax=cax, cbar_kws={'label': 'Proportion'},
square=True, xticklabels=True, yticklabels=True)
# Resize the plot dynamically based on number of classes
hm_pos = ax.get_position()
scale = len(cm) / scaler
# prevent cbar from getting unreadably small
cbar_height = max(cbar_min, scale)
ax.set_position([hm_pos.x0, hm_pos.y0, scale, scale])
cax.set_position([hm_pos.x0 + scale * .95, hm_pos.y0, scale / len(cm),
cbar_height])
# Make the heatmap subplot (not the colorbar) the active axis object so
# labels apply correctly on return
plt.sca(ax)
return heatmap
def _add_sample_size_to_xtick_labels(ser, classes):
'''ser is a pandas series.'''
labels = ['{0} (n={1})'.format(c, ser[ser == c].count()) for c in classes]
return labels
def _plot_confusion_matrix(y_test, y_pred, classes, normalize, palette,
vmin=None, vmax=None):
accuracy = accuracy_score(y_test, pd.DataFrame(y_pred))
cm = confusion_matrix(y_test, y_pred)
# normalize
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
# fill na values (e.g., true values that were not predicted) otherwise
# these will appear as whitespace in plots and results table.
cm = np.nan_to_num(cm)
_check_vmin_and_vmax(cm, vmin, vmax)
confusion = _plot_heatmap_from_confusion_matrix(cm, palette, vmin=vmin,
vmax=vmax)
x_tick_labels = _add_sample_size_to_xtick_labels(y_pred, classes)
y_tick_labels = _add_sample_size_to_xtick_labels(y_test, classes)
plt.ylabel('True label')
plt.xlabel('Predicted label')
confusion.set_xticklabels(x_tick_labels, rotation=90, ha='center')
confusion.set_yticklabels(y_tick_labels, rotation=0, ha='right')
# generate confusion matrix as pd.DataFrame for viewing
predictions = pd.DataFrame(cm, index=classes, columns=classes)
# add empty row/column to show overall accuracy in bottom right cell
# baseline error = error rate for a classifier that always guesses the
# most common class
n_samples, n_samples_largest_class, basline_accuracy, accuracy_ratio = \
_calculate_baseline_accuracy(y_test, accuracy)
predictions["Overall Accuracy"] = ""
predictions.loc["Overall Accuracy"] = ""
predictions.loc["Baseline Accuracy"] = ""
predictions.loc["Accuracy Ratio"] = ""
predictions.loc["Overall Accuracy", "Overall Accuracy"] = accuracy
predictions.loc["Baseline Accuracy", "Overall Accuracy"] = basline_accuracy
predictions.loc["Accuracy Ratio", "Overall Accuracy"] = accuracy_ratio
return predictions, confusion
def _check_vmin_and_vmax(cm, vmin, vmax):
lowest_frequency = np.amin(cm)
highest_frequency = np.amax(cm)
error = ''
if vmin is not None:
if vmin > lowest_frequency:
error += ('vmin must be less than or equal to the lowest '
'predicted class frequency:\n'
f'\t{vmin!r} is greater than {lowest_frequency!r}')
if vmax is not None:
if vmax < highest_frequency:
if error:
error += '\n'
error += ('vmax must be greater than or equal to the highest '
'predicted class frequency:\n'
f'\t{vmax!r} is less than {highest_frequency!r}')
if error:
raise ValueError(error)
def _calculate_baseline_accuracy(y_test, accuracy):
n_samples = len(y_test)
n_samples_largest_class = y_test.value_counts().iloc[0]
basline_accuracy = n_samples_largest_class / n_samples
accuracy_ratio = accuracy / basline_accuracy
return n_samples, n_samples_largest_class, basline_accuracy, accuracy_ratio
def _plot_RFE(x, y):
rfe = plt.figure()
plt.xlabel("Feature Count")
plt.ylabel("Accuracy")
plt.plot(x, y, 'grey')
return rfe
def _binarize_labels(metadata, classes):
binarized_targets = label_binarize(metadata, classes=classes)
# to generalize downstream steps, we need to coerce binary data into an
# array of shape [n_samples, n_classes]
if len(classes) == 2:
binarized_targets = np.hstack((
1 - binarized_targets, binarized_targets))
return binarized_targets
def _generate_roc_plots(metadata, probabilities, palette):
'''
metadata: pd.Series of target values.
probabilities: pd.DataFrame of class probabilities.
palette: str specifying sample-classifier colormap name.
Returns a pretty Receiver Operating Characteristic plot with AUC scores.
'''
classes = probabilities.columns
probabilities = probabilities.values
# only accepts binary inputs, so binarize the target data
binarized_targets = _binarize_labels(metadata, classes)
# Compute ROC curve and ROC area for each class
fpr, tpr, roc_auc = _roc_per_class(
binarized_targets, probabilities, classes)
# Compute micro-average ROC curve and ROC area under curve
fpr, tpr, roc_auc = _roc_micro_average(
binarized_targets, probabilities, fpr, tpr, roc_auc)
# Compute macro-average ROC curve and ROC area
fpr, tpr, roc_auc = _roc_macro_average(fpr, tpr, roc_auc, classes)
# generate ROC plot
colors = _roc_palette(palette, len(classes))
return _roc_plot(fpr, tpr, roc_auc, classes, colors)
def _roc_palette(palette, n_classes):
'''
palette: str specifying sample-classifier colormap name.
n_classes: int specifying number of classes (== n of colors to select).
Returns an iterator of colors.
'''
palette = _custom_palettes()[palette]
# specify color palette. Use different specification for str palette name
# vs. ListedColormap.
try:
colors = cycle(sns.color_palette(palette, n_colors=n_classes))
except TypeError:
# if using a continuous ListedColormap, select from normalized
# colorspace. We use linspace start=0.1 to avoid light colors at start
# of some colormaps.
palette = palette(np.linspace(0.1, 1, n_classes))
colors = cycle(palette)
return colors
# adapted from scikit-learn examples
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
def _roc_per_class(binarized_targets, probabilities, classes):
'''
binarized_targets: array of binarized class labels of dimensions [n, c],
where n = number of samples, c = number of classes.
probabilities: array of class probabilities of dimensions [n, c],
where n = number of samples, c = number of classes.
classes: list of classes.
Returns dicts of False Positive Rate (fpr), True Detection Rate (tdr), and
ROC Area Under Curve (roc_auc) for each class.
'''
fpr = dict()
tpr = dict()
roc_auc = dict()
for i, c in zip(range(len(classes)), classes):
fpr[c], tpr[c], _ = roc_curve(
binarized_targets[:, i], probabilities[:, i])
roc_auc[c] = auc(fpr[c], tpr[c])
return fpr, tpr, roc_auc
# adapted from scikit-learn examples
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
def _roc_micro_average(binarized_targets, probabilities, fpr, tpr, roc_auc):
'''
binarized_targets: array of binarized class labels of dimensions [n, c],
where n = number of samples, c = number of classes.
probabilities: array of class probabilities of dimensions [n, c],
where n = number of samples, c = number of classes.
fpr: dict of false-positive rates for each class.
tdr: dict of true-detection rates for each class.
roc_auc: dict of auc scores for each class.
Returns fpr, tdr, roc_auc with micro average scores added.
'''
fpr["micro"], tpr["micro"], _ = roc_curve(
binarized_targets.ravel(), probabilities.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
return fpr, tpr, roc_auc
# adapted from scikit-learn examples
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
def _roc_macro_average(fpr, tpr, roc_auc, classes):
'''
fpr: dict of false-positive rates for each class.
tdr: dict of true-detection rates for each class.
roc_auc: dict of auc scores for each class.
classes: list of classes.
Returns fpr, tdr, roc_auc with micro average scores added.
'''
# Aggregate all false positive rates for computing average
all_fpr = np.unique(np.concatenate([fpr[c] for c in classes]))
# Then interpolate all ROC curves at this point
mean_tpr = np.zeros_like(all_fpr)
for c in classes:
mean_tpr += interp(all_fpr, fpr[c], tpr[c])
# Finally average it and compute AUC
mean_tpr /= len(classes)
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
return fpr, tpr, roc_auc
# inspired by scikit-learn examples for multi-class ROC plots
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
def _roc_plot(fpr, tpr, roc_auc, classes, colors):
'''
fpr: dict of false-positive rates for each class.
tdr: dict of true-detection rates for each class.
roc_auc: dict of auc scores for each class.
classes: list of classes.
colors: list of colors.
'''
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 4), sharey=True)
lw = 3
# plot averages in each panel
for i in [0, 1]:
axes[i].plot(fpr['micro'], tpr['micro'], color='navy', linestyle=':',
lw=lw,
label='micro-average (AUC = %0.2f)' % roc_auc['micro'])
axes[i].plot(fpr['macro'], tpr['macro'], color='lightblue',
linestyle=':', lw=lw,
label='macro-average (AUC = %0.2f)' % roc_auc['macro'])
# plot 1:1 ratio line
axes[i].plot([0, 1], [0, 1], color='grey', lw=lw, linestyle='--',
label='Chance')
axes[i].set_xlim([0.0, 1.0])
axes[i].set_ylim([0.0, 1.05])
axes[i].set_xlabel('False Positive Rate')
# left panel: averages only
axes[0].set_ylabel('True Positive Rate')
axes[0].set_title('Receiver Operating Characteristic Average Scores')
axes[0].legend(loc="lower right")
# right panel: averages and per-class ROCs
axes[1].set_title('Per-Class Receiver Operating Characteristics')
for c, color in zip(classes, colors):
plt.plot(fpr[c], tpr[c], color=color, lw=lw,
label='{0} (AUC = {1:0.2f})'.format(c, roc_auc[c]))
axes[1].legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
return fig
|