1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
|
/* ====================================================================
*
*
* BSD LICENSE
*
* Copyright(c) 2025 Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* ====================================================================
*/
/*****************************************************************************
* @file qat_prov_kmgmt_rsa_utils.c
*
* This file provides an implementation to qatprovider RSA key management
* operations
*
*****************************************************************************/
#include <openssl/params.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/core_names.h>
#include <openssl/evp.h>
#include <openssl/bn.h>
#include <openssl/param_build.h>
#include <openssl/types.h>
#include <openssl/safestack.h>
#include "qat_utils.h"
#include "qat_prov_rsa.h"
#include "qat_prov_kmgmt_rsa_utils.h"
#include "e_qat.h"
#if defined(ENABLE_QAT_HW_RSA) || defined(ENABLE_QAT_SW_RSA)
#define OSSL_NELEM(x) (sizeof(x)/sizeof((x)[0]))
static const char *qat_rsa_mp_factor_names[] = {
OSSL_PKEY_PARAM_RSA_FACTOR1,
OSSL_PKEY_PARAM_RSA_FACTOR2,
NULL
};
static const char *qat_rsa_mp_exp_names[] = {
OSSL_PKEY_PARAM_RSA_EXPONENT1,
OSSL_PKEY_PARAM_RSA_EXPONENT2,
NULL
};
static const char *qat_rsa_mp_coeff_names[] = {
OSSL_PKEY_PARAM_RSA_COEFFICIENT1,
NULL
};
static const OSSL_ITEM qat_oaeppss_name_nid_map[] = {
{ NID_sha1, OSSL_DIGEST_NAME_SHA1 },
{ NID_sha224, OSSL_DIGEST_NAME_SHA2_224 },
{ NID_sha256, OSSL_DIGEST_NAME_SHA2_256 },
{ NID_sha384, OSSL_DIGEST_NAME_SHA2_384 },
{ NID_sha512, OSSL_DIGEST_NAME_SHA2_512 },
{ NID_sha512_224, OSSL_DIGEST_NAME_SHA2_512_224 },
{ NID_sha512_256, OSSL_DIGEST_NAME_SHA2_512_256 },
};
static int qat_rsa_pss_params_30_set_defaults(QAT_RSA_PSS_PARAMS_30 *rsa_pss_params)
{
if (rsa_pss_params == NULL)
return 0;
*rsa_pss_params = default_RSASSA_PSS_params;
return 1;
}
static const char *qat_rsa_mgf_nid2name(int mgf)
{
if (mgf == NID_mgf1)
return SN_mgf1;
return NULL;
}
static int qat_rsa_pss_params_30_set_hashalg(QAT_RSA_PSS_PARAMS_30 *rsa_pss_params,
int hashalg_nid)
{
if (rsa_pss_params == NULL)
return 0;
rsa_pss_params->hash_algorithm_nid = hashalg_nid;
return 1;
}
static int qat_rsa_pss_params_30_set_maskgenhashalg(QAT_RSA_PSS_PARAMS_30 *rsa_pss_params,
int maskgenhashalg_nid)
{
if (rsa_pss_params == NULL)
return 0;
rsa_pss_params->mask_gen.hash_algorithm_nid = maskgenhashalg_nid;
return 1;
}
static int qat_rsa_pss_params_30_set_saltlen(QAT_RSA_PSS_PARAMS_30 *rsa_pss_params,
int saltlen)
{
if (rsa_pss_params == NULL)
return 0;
rsa_pss_params->salt_len = saltlen;
return 1;
}
static int qat_rsa_pss_params_30_maskgenalg(const QAT_RSA_PSS_PARAMS_30 *rsa_pss_params)
{
if (rsa_pss_params == NULL)
return default_RSASSA_PSS_params.mask_gen.algorithm_nid;
return rsa_pss_params->mask_gen.algorithm_nid;
}
static int md_is_a(const void *md, const char *name)
{
return EVP_MD_is_a(md, name);
}
static int meth2nid(const void *meth,
int (*meth_is_a)(const void *meth, const char *name),
const OSSL_ITEM *items, size_t items_n)
{
size_t i;
if (meth != NULL)
for (i = 0; i < items_n; i++)
if (meth_is_a(meth, items[i].ptr))
return (int)items[i].id;
return NID_undef;
}
int qat_rsa_oaeppss_md2nid(const EVP_MD *md)
{
return meth2nid(md, md_is_a, qat_oaeppss_name_nid_map,
OSSL_NELEM(qat_oaeppss_name_nid_map));
}
/**
* @brief Parse and set RSA-PSS parameters from OSSL_PARAM array.
*
* This function extracts and sets the RSA-PSS parameters (hash algorithm, mask generation function,
* mask generation hash algorithm, and salt length) from the provided OSSL_PARAM array. If any
* parameter is present, default PSS values are set first and then overridden by the provided values.
*
* @param[out] pss_params Pointer to QAT_RSA_PSS_PARAMS_30 structure to populate.
* @param[in,out] defaults_set Pointer to an int flag indicating if defaults have been set (set to 1 if defaults are set).
* @param[in] params Array of OSSL_PARAM containing possible PSS parameters.
* @param[in] libctx OpenSSL library context for fetching digest algorithms.
*
* @return 1 on success, 0 on failure.
*/
static int qat_rsa_pss_params_30_fromdata(QAT_RSA_PSS_PARAMS_30 *pss_params,
int *defaults_set,
const OSSL_PARAM params[],
OSSL_LIB_CTX *libctx)
{
const OSSL_PARAM *param_md, *param_mgf, *param_mgf1md, *param_saltlen;
const OSSL_PARAM *param_propq;
const char *propq = NULL;
EVP_MD *md = NULL, *mgf1md = NULL;
int saltlen;
int ret = 0;
if (pss_params == NULL)
return 0;
param_propq =
OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_DIGEST_PROPS);
param_md =
OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_DIGEST);
param_mgf =
OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_MASKGENFUNC);
param_mgf1md =
OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_MGF1_DIGEST);
param_saltlen =
OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_PSS_SALTLEN);
if (param_propq != NULL) {
if (param_propq->data_type == OSSL_PARAM_UTF8_STRING)
propq = param_propq->data;
}
/*
* If we get any of the parameters, we know we have at least some
* restrictions, so we start by setting default values, and let each
* parameter override their specific restriction data.
*/
if (!*defaults_set
&& (param_md != NULL || param_mgf != NULL || param_mgf1md != NULL
|| param_saltlen != NULL)) {
if (!qat_rsa_pss_params_30_set_defaults(pss_params))
return 0;
*defaults_set = 1;
}
if (param_mgf != NULL) {
int default_maskgenalg_nid = qat_rsa_pss_params_30_maskgenalg(NULL);
const char *mgfname = NULL;
if (param_mgf->data_type == OSSL_PARAM_UTF8_STRING)
mgfname = param_mgf->data;
else if (!OSSL_PARAM_get_utf8_ptr(param_mgf, &mgfname))
return 0;
if (OPENSSL_strcasecmp(param_mgf->data,
qat_rsa_mgf_nid2name(default_maskgenalg_nid)) != 0)
return 0;
}
/*
* We're only interested in the NIDs that correspond to the MDs, so the
* exact propquery is unimportant in the EVP_MD_fetch() calls below.
*/
if (param_md != NULL) {
const char *mdname = NULL;
if (param_md->data_type == OSSL_PARAM_UTF8_STRING)
mdname = param_md->data;
else if (!OSSL_PARAM_get_utf8_ptr(param_mgf, &mdname))
goto err;
if ((md = EVP_MD_fetch(libctx, mdname, propq)) == NULL
|| !qat_rsa_pss_params_30_set_hashalg(pss_params,
qat_rsa_oaeppss_md2nid(md)))
goto err;
}
if (param_mgf1md != NULL) {
const char *mgf1mdname = NULL;
if (param_mgf1md->data_type == OSSL_PARAM_UTF8_STRING)
mgf1mdname = param_mgf1md->data;
else if (!OSSL_PARAM_get_utf8_ptr(param_mgf, &mgf1mdname))
goto err;
if ((mgf1md = EVP_MD_fetch(libctx, mgf1mdname, propq)) == NULL
|| !qat_rsa_pss_params_30_set_maskgenhashalg(
pss_params, qat_rsa_oaeppss_md2nid(mgf1md)))
goto err;
}
if (param_saltlen != NULL) {
if (!OSSL_PARAM_get_int(param_saltlen, &saltlen)
|| !qat_rsa_pss_params_30_set_saltlen(pss_params, saltlen))
goto err;
}
ret = 1;
err:
EVP_MD_free(md);
EVP_MD_free(mgf1md);
return ret;
}
/**
* @brief Validates and parses RSA-PSS parameters from an OSSL_PARAM array.
*
* This function extracts and sets RSA-PSS parameters (such as hash algorithm, mask generation
* function, mask generation hash algorithm, and salt length) from the provided OSSL_PARAM array
* into the given QAT_RSA_PSS_PARAMS_30 structure. It ensures that PSS parameters are only accepted
* for PSS-type RSA keys, and applies default restrictions if necessary.
*
* @param pss_params Pointer to QAT_RSA_PSS_PARAMS_30 structure to populate.
* @param defaults_set Pointer to an int flag indicating if defaults have been set (set to 1 if defaults are set).
* @param params Array of OSSL_PARAM containing possible PSS parameters.
* @param rsa_type Integer indicating the RSA key type (e.g., RSA_FLAG_TYPE_RSASSAPSS).
* @param libctx OpenSSL library context for fetching digest algorithms.
*
* @return 1 on success, 0 on failure.
*/
int qat_pss_params_fromdata(QAT_RSA_PSS_PARAMS_30 *pss_params, int *defaults_set,
const OSSL_PARAM params[], int rsa_type,
OSSL_LIB_CTX *libctx)
{
if (!qat_rsa_pss_params_30_fromdata(pss_params, defaults_set,
params, libctx))
return 0;
/* If not a PSS type RSA, sending us PSS parameters is wrong */
if (rsa_type != RSA_FLAG_TYPE_RSASSAPSS
&& !qat_rsa_pss_params_30_is_unrestricted(pss_params))
return 0;
return 1;
}
DEFINE_STACK_OF(BIGNUM)
DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM)
/**
* @brief Allocates and initializes a new QAT_RSA structure with a given OpenSSL library context.
*
* This function creates a new QAT_RSA structure, initializes its fields, sets up the reference
* count and locking, assigns the provided OpenSSL library context, and sets the default RSA method
* and flags. If initialization of the RSA method fails, it cleans up and returns NULL.
*
* @param libctx Pointer to the OpenSSL library context to associate with the new QAT_RSA structure.
*
* @return Pointer to the newly allocated QAT_RSA structure, or NULL on failure.
*/
QAT_RSA *qat_rsa_new_with_ctx(OSSL_LIB_CTX *libctx)
{
QAT_RSA *ret = OPENSSL_zalloc(sizeof(*ret));
if (ret == NULL)
return NULL;
ret->lock = CRYPTO_THREAD_lock_new();
if (ret->lock == NULL) {
QATerr(ERR_LIB_RSA, ERR_R_CRYPTO_LIB);
OPENSSL_free(ret);
return NULL;
}
if (!QAT_CRYPTO_NEW_REF(&ret->references, 1)) {
OPENSSL_free(ret);
return NULL;
}
ret->libctx = libctx;
ret->meth = RSA_get_default_method();
ret->flags = ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
if ((ret->meth->init != NULL) && !ret->meth->init(ret)) {
QATerr(ERR_LIB_RSA, ERR_R_INIT_FAIL);
goto err;
}
return ret;
err:
QAT_RSA_free(ret);
return NULL;
}
OSSL_LIB_CTX *qat_rsa_get0_libctx(QAT_RSA *r)
{
return r->libctx;
}
static const BIGNUM *QAT_RSA_get0_p(const RSA *r)
{
return r->p;
}
static const BIGNUM *QAT_RSA_get0_q(const RSA *r)
{
return r->q;
}
static const BIGNUM *QAT_RSA_get0_dmp1(const RSA *r)
{
return r->dmp1;
}
static const BIGNUM *QAT_RSA_get0_dmq1(const RSA *r)
{
return r->dmq1;
}
static const BIGNUM *QAT_RSA_get0_iqmp(const RSA *r)
{
return r->iqmp;
}
/**
* @brief Collects all CRT-related RSA parameters into separate stacks.
*
* This function pushes the prime factors (p, q), exponents (dmp1, dmq1),
* and coefficient (iqmp) from the given QAT_RSA structure into the provided
* stacks. If the key does not have CRT parameters (i.e., p is NULL), the
* function returns 1 without modifying the stacks.
*
* @param r Pointer to the QAT_RSA structure.
* @param primes Stack to receive the prime factors (p, q).
* @param exps Stack to receive the exponents (dmp1, dmq1).
* @param coeffs Stack to receive the coefficient (iqmp).
*
* @return 1 on success, 0 on failure.
*/
static int qat_rsa_get0_all_params(QAT_RSA *r, STACK_OF(BIGNUM_const) *primes,
STACK_OF(BIGNUM_const) *exps,
STACK_OF(BIGNUM_const) *coeffs)
{
if (r == NULL)
return 0;
/* If |p| is NULL, there are no CRT parameters */
if (RSA_get0_p(r) == NULL)
return 1;
sk_BIGNUM_const_push(primes, QAT_RSA_get0_p(r));
sk_BIGNUM_const_push(primes, QAT_RSA_get0_q(r));
sk_BIGNUM_const_push(exps, QAT_RSA_get0_dmp1(r));
sk_BIGNUM_const_push(exps, QAT_RSA_get0_dmq1(r));
sk_BIGNUM_const_push(coeffs, QAT_RSA_get0_iqmp(r));
return 1;
}
/**
* @brief Derives and sets the CRT parameters (dmp1, dmq1, iqmp) for the given QAT_RSA structure.
*
* This function computes the CRT parameters based on the prime factors (p, q) and the private exponent (d)
* of the RSA key. It uses a BN_CTX for efficient BIGNUM operations and sets the computed parameters in the
* QAT_RSA structure. If any required parameter is missing or an error occurs during computation, it returns 0.
*
* @param rsa Pointer to the QAT_RSA structure containing the RSA key.
* @param ctx Pointer to a BN_CTX for BIGNUM operations.
*
* @return 1 on success, 0 on failure.
*/
int derive_and_set_crt_params(QAT_RSA *rsa, BN_CTX *ctx)
{
BIGNUM *p1 = NULL, *q1 = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
int ret = 0;
if (rsa == NULL || rsa->p == NULL || rsa->q == NULL || rsa->d == NULL) {
QATerr(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
BN_CTX_start(ctx);
/* Allocate temporary BIGNUMs */
p1 = BN_CTX_get(ctx);
q1 = BN_CTX_get(ctx);
dmp1 = BN_CTX_get(ctx);
dmq1 = BN_CTX_get(ctx);
iqmp = BN_CTX_get(ctx);
if (iqmp == NULL) {
QATerr(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Compute p-1 and q-1 */
if (!BN_sub(p1, rsa->p, BN_value_one()) || !BN_sub(q1, rsa->q, BN_value_one())) {
QATerr(ERR_LIB_RSA, ERR_R_BN_LIB);
goto err;
}
/* Compute dP = d mod (p-1) */
if (!BN_mod(dmp1, rsa->d, p1, ctx)) {
QATerr(ERR_LIB_RSA, ERR_R_BN_LIB);
goto err;
}
/* Compute dQ = d mod (q-1) */
if (!BN_mod(dmq1, rsa->d, q1, ctx)) {
QATerr(ERR_LIB_RSA, ERR_R_BN_LIB);
goto err;
}
/* Compute qInv = q^(-1) mod p */
if (!BN_mod_inverse(iqmp, rsa->q, rsa->p, ctx)) {
QATerr(ERR_LIB_RSA, ERR_R_BN_LIB);
goto err;
}
/* Set the CRT parameters in the RSA structure */
if (!RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp)) {
QATerr(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Ownership of dmp1, dmq1, and iqmp is transferred to rsa */
dmp1 = dmq1 = iqmp = NULL;
ret = 1;
err:
/* Free temporary BIGNUMs */
BN_CTX_end(ctx);
return ret;
}
/**
* @brief Imports an RSA private key from an OSSL_PARAM array into a QAT_RSA structure.
*
* This function extracts the RSA key components (modulus n, public exponent e, private exponent d,
* and optionally prime factors p and q) from the provided OSSL_PARAM array and sets them in the
* given QAT_RSA structure. If private key components are included, it also derives and sets the
* CRT parameters (dmp1, dmq1, iqmp) required for efficient RSA operations.
*
* @param rsa Pointer to the QAT_RSA structure to populate.
* @param params Array of OSSL_PARAM containing the key components.
* @param include_private Nonzero if private key components (p, q, d, etc.) should be imported.
*
* @return 1 on success, 0 on failure.
*/
int import_rsa_private_key(QAT_RSA *rsa, const OSSL_PARAM params[],
int include_private)
{
DEBUG("%s\n", __func__);
const OSSL_PARAM *param_n, *param_e, *param_d;
const OSSL_PARAM *param_p, *param_q;
BIGNUM *n = NULL, *e = NULL, *d = NULL;
BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
int is_private = 0;
BN_CTX *ctx = NULL;
if (rsa == NULL || params == NULL)
return 0;
/* Extract modulus (n), public exponent (e), and
* private exponent (d) */
param_n = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_N);
param_e = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_E);
param_d = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_D);
if (param_n == NULL || param_e == NULL || param_d == NULL) {
QATerr(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
goto err;
}
if (!OSSL_PARAM_get_BN(param_n, &n) ||
!OSSL_PARAM_get_BN(param_e, &e) ||
!OSSL_PARAM_get_BN(param_d, &d)) {
QATerr(ERR_LIB_RSA, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
if (include_private) {
/* Extract prime factors (p, q) */
DEBUG("include_private set.\n");
ctx = BN_CTX_new_ex(rsa->libctx);
if (ctx == NULL)
goto err;
param_p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_FACTOR1);
param_q = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_FACTOR2);
if (param_p != NULL && param_q != NULL) {
if (!OSSL_PARAM_get_BN(param_p, &p) ||
!OSSL_PARAM_get_BN(param_q, &q)) {
WARN("invalid argument error.");
QATerr(ERR_LIB_RSA, ERR_R_PASSED_INVALID_ARGUMENT);
goto err;
}
}
}
if (!RSA_set0_key(rsa, n, e, d)) {
WARN("internal error.");
QATerr(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Extract CRT parameters (dmp1, dmq1, iqmp) */
is_private = (d != NULL);
n = e = d = NULL; /* Ownership transferred to RSA */
if (is_private) {
if (p != NULL && q != NULL) {
if (!RSA_set0_factors(rsa, p, q)) {
QATerr(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
p = q = NULL; /* Ownership transferred to RSA */
if (!derive_and_set_crt_params(rsa, ctx)) {
WARN("Failed to derive and set CRT parameters\n");
goto err;
}
}
}
/* Validate the key */
DEBUG("import routine complete.\n");
return 1;
err:
BN_free(n);
BN_free(e);
BN_free(d);
BN_free(p);
BN_free(q);
BN_free(dmp1);
BN_free(dmq1);
BN_free(iqmp);
BN_CTX_free(ctx);
return 0;
}
int qat_rsa_pss_params_30_copy(QAT_RSA_PSS_PARAMS_30 *to,
const QAT_RSA_PSS_PARAMS_30 *from)
{
memcpy(to, from, sizeof(*to));
return 1;
}
/**
* @brief Sets a BIGNUM value into an OSSL_PARAM_BLD builder or OSSL_PARAM array.
*
* This helper function sets the specified BIGNUM value for a given parameter key,
* either by pushing it into an OSSL_PARAM_BLD builder (if provided) or by locating
* the parameter in an OSSL_PARAM array and setting its value. If neither is provided,
* the function returns success.
*
* @param bld Optional OSSL_PARAM_BLD builder (may be NULL).
* @param p Optional OSSL_PARAM array to populate (may be NULL).
* @param key Name of the parameter to set.
* @param bn Pointer to the BIGNUM value to set.
*
* @return 1 on success, 0 on failure.
*/
static int qat_param_build_set_bn(OSSL_PARAM_BLD *bld, OSSL_PARAM *p,
const char *key, const BIGNUM *bn)
{
if (bld != NULL)
return OSSL_PARAM_BLD_push_BN(bld, key, bn);
p = OSSL_PARAM_locate(p, key);
if (p != NULL)
return OSSL_PARAM_set_BN(p, bn) > 0;
return 1;
}
/**
* @brief Sets multiple BIGNUM values into an OSSL_PARAM_BLD or OSSL_PARAM array.
*
* This helper function iterates over a stack of BIGNUMs and a corresponding array of parameter
* names, and sets each BIGNUM value into the provided OSSL_PARAM_BLD builder or OSSL_PARAM array.
* If a builder is provided, values are pushed into it; otherwise, the function locates the
* parameter in the array and sets its value.
*
* @param bld Optional OSSL_PARAM_BLD builder (may be NULL).
* @param params Optional OSSL_PARAM array to populate (may be NULL).
* @param names Array of parameter names (NULL-terminated).
* @param stk Stack of BIGNUM_const values to set.
*
* @return 1 on success, 0 on failure.
*/
static int qat_param_build_set_multi_key_bn(OSSL_PARAM_BLD *bld,
OSSL_PARAM *params,
const char *names[],
STACK_OF(BIGNUM_const) *stk)
{
int i, sz = sk_BIGNUM_const_num(stk);
OSSL_PARAM *p;
const BIGNUM *bn;
if (bld != NULL) {
for (i = 0; i < sz && names[i] != NULL; ++i) {
bn = sk_BIGNUM_const_value(stk, i);
if (bn != NULL && !OSSL_PARAM_BLD_push_BN(bld, names[i], bn))
return 0;
}
return 1;
}
for (i = 0; i < sz && names[i] != NULL; ++i) {
bn = sk_BIGNUM_const_value(stk, i);
p = OSSL_PARAM_locate(params, names[i]);
if (p != NULL && bn != NULL) {
if (!OSSL_PARAM_set_BN(p, bn))
return 0;
}
}
return 1;
}
/**
* @brief Serializes a QAT_RSA key into an OSSL_PARAM array or builder.
*
* This function exports the components of the given QAT_RSA structure (modulus n,
* public exponent e, private exponent d, and optionally CRT parameters and factors)
* into an OSSL_PARAM_BLD or OSSL_PARAM array for use with OpenSSL key export or
* parameter passing. If include_private is nonzero, private key components are included.
*
* @param rsa Pointer to the QAT_RSA structure to serialize.
* @param bld Optional OSSL_PARAM_BLD builder (may be NULL).
* @param params Optional OSSL_PARAM array to populate (may be NULL).
* @param include_private Nonzero to include private key components.
*
* @return 1 on success, 0 on failure.
*/
int qat_rsa_todata(QAT_RSA *rsa, OSSL_PARAM_BLD *bld, OSSL_PARAM params[],
int include_private)
{
DEBUG("%s\n", __func__);
int ret = 0;
const BIGNUM *rsa_d = NULL, *rsa_n = NULL, *rsa_e = NULL;
STACK_OF(BIGNUM_const) *factors = sk_BIGNUM_const_new_null();
STACK_OF(BIGNUM_const) *exps = sk_BIGNUM_const_new_null();
STACK_OF(BIGNUM_const) *coeffs = sk_BIGNUM_const_new_null();
if (rsa == NULL || factors == NULL || exps == NULL || coeffs == NULL)
goto err;
RSA_get0_key(rsa, &rsa_n, &rsa_e, &rsa_d);
qat_rsa_get0_all_params(rsa, factors, exps, coeffs);
if (!qat_param_build_set_bn(bld, params, OSSL_PKEY_PARAM_RSA_N, rsa_n)
|| !qat_param_build_set_bn(bld, params, OSSL_PKEY_PARAM_RSA_E, rsa_e))
goto err;
/* Check private key data integrity */
if (include_private && rsa_d != NULL) {
if (!qat_param_build_set_bn(bld, params, OSSL_PKEY_PARAM_RSA_D,
rsa_d)
|| !qat_param_build_set_multi_key_bn(bld, params,
qat_rsa_mp_factor_names,
factors)
|| !qat_param_build_set_multi_key_bn(bld, params,
qat_rsa_mp_exp_names, exps)
|| !qat_param_build_set_multi_key_bn(bld, params,
qat_rsa_mp_coeff_names,
coeffs))
goto err;
}
ret = 1;
err:
sk_BIGNUM_const_free(factors);
sk_BIGNUM_const_free(exps);
sk_BIGNUM_const_free(coeffs);
return ret;
}
/**
* @brief Callback function for RSA key generation progress reporting.
*
* This function is called during RSA key generation to report progress to the caller.
* It constructs an OSSL_PARAM array with the current potential prime and iteration count,
* and invokes the user-provided callback with these parameters.
*
* @param p Current potential prime value.
* @param n Current iteration count.
* @param cb Pointer to the BN_GENCB callback structure.
*
* @return The return value of the user-provided callback.
*/
int qat_rsa_gencb(int p, int n, BN_GENCB *cb)
{
QAT_RSA_GEN_CTX *gctx = BN_GENCB_get_arg(cb);
OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END, OSSL_PARAM_END };
params[0] = OSSL_PARAM_construct_int(OSSL_GEN_PARAM_POTENTIAL, &p);
params[1] = OSSL_PARAM_construct_int(OSSL_GEN_PARAM_ITERATION, &n);
return gctx->cb(params, gctx->cbarg);
}
static const OSSL_PARAM rsa_key_types[] = {
RSA_KEY_TYPES()
OSSL_PARAM_END
};
const OSSL_PARAM *qat_rsa_imexport_types(int selection)
{
if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0)
return rsa_key_types;
return NULL;
}
static int qat_param_build_set_utf8_string(OSSL_PARAM_BLD *bld, OSSL_PARAM *p,
const char *key, const char *buf)
{
if (bld != NULL)
return OSSL_PARAM_BLD_push_utf8_string(bld, key, buf, 0);
p = OSSL_PARAM_locate(p, key);
if (p != NULL)
return OSSL_PARAM_set_utf8_string(p, buf);
return 1;
}
static int qat_param_build_set_int(OSSL_PARAM_BLD *bld, OSSL_PARAM *p,
const char *key, int num)
{
if (bld != NULL)
return OSSL_PARAM_BLD_push_int(bld, key, num);
p = OSSL_PARAM_locate(p, key);
if (p != NULL)
return OSSL_PARAM_set_int(p, num);
return 1;
}
/**
* @brief Serializes QAT RSA-PSS parameters into an OSSL_PARAM array or builder.
*
* This function exports the provided QAT_RSA_PSS_PARAMS_30 structure into an OSSL_PARAM_BLD
* or OSSL_PARAM array, suitable for OpenSSL key export or parameter passing. Only parameters
* that differ from the default are included. At least one PSS-related parameter (saltlen) is
* always exported to ensure the key is not seen as unrestricted.
*
* @param pss Pointer to the QAT_RSA_PSS_PARAMS_30 structure to serialize.
* @param bld Optional OSSL_PARAM_BLD builder (may be NULL).
* @param params Optional OSSL_PARAM array to populate (may be NULL).
*
* @return 1 on success, 0 on failure.
*/
int qat_rsa_pss_params_30_todata(const QAT_RSA_PSS_PARAMS_30 *pss,
OSSL_PARAM_BLD *bld, OSSL_PARAM params[])
{
if (!qat_rsa_pss_params_30_is_unrestricted(pss)) {
int hashalg_nid = qat_rsa_pss_params_30_hashalg(pss);
int maskgenalg_nid = qat_rsa_pss_params_30_maskgenalg(pss);
int maskgenhashalg_nid = qat_rsa_pss_params_30_maskgenhashalg(pss);
int saltlen = qat_rsa_pss_params_30_saltlen(pss);
int default_hashalg_nid = qat_rsa_pss_params_30_hashalg(NULL);
int default_maskgenalg_nid = qat_rsa_pss_params_30_maskgenalg(NULL);
int default_maskgenhashalg_nid =
qat_rsa_pss_params_30_maskgenhashalg(NULL);
const char *mdname =
(hashalg_nid == default_hashalg_nid
? NULL : qat_rsa_oaeppss_nid2name(hashalg_nid));
const char *mgfname =
(maskgenalg_nid == default_maskgenalg_nid
? NULL : qat_rsa_oaeppss_nid2name(maskgenalg_nid));
const char *mgf1mdname =
(maskgenhashalg_nid == default_maskgenhashalg_nid
? NULL : qat_rsa_oaeppss_nid2name(maskgenhashalg_nid));
const char *key_md = OSSL_PKEY_PARAM_RSA_DIGEST;
const char *key_mgf = OSSL_PKEY_PARAM_RSA_MASKGENFUNC;
const char *key_mgf1_md = OSSL_PKEY_PARAM_RSA_MGF1_DIGEST;
const char *key_saltlen = OSSL_PKEY_PARAM_RSA_PSS_SALTLEN;
/*
* To ensure that the key isn't seen as unrestricted by the recipient,
* we make sure that at least one PSS-related parameter is passed, even
* if it has a default value; saltlen.
*/
if ((mdname != NULL
&& !qat_param_build_set_utf8_string(bld, params, key_md, mdname))
|| (mgfname != NULL
&& !qat_param_build_set_utf8_string(bld, params,
key_mgf, mgfname))
|| (mgf1mdname != NULL
&& !qat_param_build_set_utf8_string(bld, params,
key_mgf1_md, mgf1mdname))
|| (!qat_param_build_set_int(bld, params, key_saltlen, saltlen)))
return 0;
}
return 1;
}
/**
* @brief Generates a new RSA keypair in software and populates a QAT_RSA structure.
*
* This function generates a new RSA keypair of the specified bit length, using the provided
* public exponent (or 65537 if efixed is NULL), and fills in all key components in the
* given QAT_RSA structure, including CRT parameters. The function ensures the generated
* key meets minimum security requirements and uses secure memory for private values.
*
* @param rsa Pointer to the QAT_RSA structure to populate.
* @param nbits Number of bits for the modulus (must be >= 2048).
* @param efixed Optional public exponent (BIGNUM), or NULL to use 65537.
* @param cb Optional BN_GENCB callback for progress reporting.
*
* @return 1 on success, 0 on failure.
*/
int RSA_generate_swkey(QAT_RSA *rsa, int nbits, BIGNUM *efixed, BN_GENCB *cb)
{
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *e = NULL, *p1 = NULL, *q1 = NULL, *lcm = NULL;
ctx = BN_CTX_new();
if (ctx == NULL)
return 0;
BN_CTX_start(ctx);
p1 = BN_CTX_get(ctx);
q1 = BN_CTX_get(ctx);
lcm = BN_CTX_get(ctx);
if (lcm == NULL)
goto err;
if (efixed == NULL) {
e = BN_new();
if (e == NULL || !BN_set_word(e, 65537))
goto err;
} else {
DEBUG("public exponent found in genctx.\n");
e = (BIGNUM *)efixed;
}
rsa->p = BN_secure_new();
rsa->q = BN_secure_new();
if (rsa->p == NULL || rsa->q == NULL)
goto err;
if (!BN_generate_prime_ex(rsa->p, nbits / 2, 0, NULL, NULL, cb) ||
!BN_generate_prime_ex(rsa->q, nbits / 2, 0, NULL, NULL, cb))
goto err;
if (BN_cmp(rsa->p, rsa->q) < 0) {
BIGNUM *tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
if (!BN_sub(p1, rsa->p, BN_value_one()) || !BN_sub(q1, rsa->q, BN_value_one()))
goto err;
/* Allocate a temporary BIGNUM for GCD */
BIGNUM *gcd = BN_CTX_get(ctx);
if (gcd == NULL)
goto err;
/* Compute GCD(p1, q1) and store it in `gcd` */
if (!BN_gcd(gcd, p1, q1, ctx))
goto err;
if (!BN_mul(lcm, p1, q1, ctx) || !BN_div(lcm, NULL, lcm, gcd, ctx))
goto err;
rsa->e = BN_dup(e);
if (rsa->e == NULL)
goto err;
rsa->d = BN_secure_new();
if (rsa->d == NULL || !BN_mod_inverse(rsa->d, e, lcm, ctx))
goto err;
if (BN_num_bits(rsa->d) <= (nbits >> 1))
goto err;
rsa->n = BN_new();
if (rsa->n == NULL || !BN_mul(rsa->n, rsa->p, rsa->q, ctx))
goto err;
rsa->dmp1 = BN_secure_new();
rsa->dmq1 = BN_secure_new();
rsa->iqmp = BN_secure_new();
if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL)
goto err;
if (!BN_mod(rsa->dmp1, rsa->d, p1, ctx) ||
!BN_mod(rsa->dmq1, rsa->d, q1, ctx) ||
!BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx))
goto err;
ret = 1;
DEBUG("%s complete.\n", __func__);
err:
if (ret != 1) {
BN_free(rsa->n);
BN_free(rsa->d);
BN_free(rsa->dmp1);
BN_free(rsa->dmq1);
BN_free(rsa->iqmp);
BN_free(rsa->p);
BN_free(rsa->q);
}
if (efixed == NULL)
BN_free(e);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ret;
}
#endif
|