File: gpt-utils.c

package info (click to toggle)
qbootctl 0.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 248 kB
  • sloc: ansic: 1,571; makefile: 3
file content (816 lines) | stat: -rw-r--r-- 25,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
 * Copyright (C) 2021-2022 Caleb Connolly <caleb@connolly.tech>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *     * Neither the name of The Linux Foundation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define _LARGEFILE64_SOURCE /* enable lseek64() */

#include <assert.h>
#include <asm/byteorder.h>
#include <ctype.h>
#include <stdlib.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <stdio.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>

#include "gpt-utils.h"
#include "utils.h"
#include "crc32.h"

/* list the names of the backed-up partitions to be swapped */
/* extension used for the backup partitions - tzbak, abootbak, etc. */
#define BAK_PTN_NAME_EXT "bak"
#define XBL_PRIMARY	 "/dev/disk/by-partlabel/xbl_a" // FIXME
#define XBL_BACKUP	 "/dev/disk/by-partlabel/xblbak"
#define XBL_AB_PRIMARY	 "/dev/disk/by-partlabel/xbl_a"
#define XBL_AB_SECONDARY "/dev/disk/by-partlabel/xbl_b"
/* GPT defines */
#define MAX_LUNS 26
// Size of the buffer that needs to be passed to the UFS ioctl
#define UFS_ATTR_DATA_SIZE 32
// This will allow us to get the root lun path from the path to the partition.
// i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that
// the boot critical luns lie between sda to sdz which is acceptable because
// only user added external disks,etc would lie beyond that limit which do not
// contain partitions that interest us here.
#define PATH_TRUNCATE_LOC (sizeof("/dev/sda") - 1)

// From /dev/disk/sda get just sda
#define LUN_NAME_START_LOC (sizeof("/dev/") - 1)
#define BOOT_LUN_A_ID	   1
#define BOOT_LUN_B_ID	   2

#define GET_4_BYTES(ptr)                                                                           \
	((uint32_t) * ((uint8_t *)(ptr)) | ((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) |            \
	 ((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | ((uint32_t) * ((uint8_t *)(ptr) + 3) << 24))

#define GET_8_BYTES(ptr)                                                                           \
	((uint64_t) * ((uint8_t *)(ptr)) | ((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) |            \
	 ((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) |                                             \
	 ((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) |                                             \
	 ((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) |                                             \
	 ((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) |                                             \
	 ((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | ((uint64_t) * ((uint8_t *)(ptr) + 7) << 56))

#define PUT_4_BYTES(ptr, y)                                                                        \
	*((uint8_t *)(ptr)) = (y)&0xff;                                                            \
	*((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff;                                               \
	*((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff;                                              \
	*((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;

enum gpt_state { GPT_OK = 0, GPT_BAD_SIGNATURE, GPT_BAD_CRC };
// List of LUN's containing boot critical images.
// Required in the case of UFS devices
struct update_data {
	char lun_list[MAX_LUNS][GPT_PTN_PATH_MAX];
	uint32_t num_valid_entries;
};

void DumpHex(const void *data, size_t size)
{
	char ascii[17];
	size_t i, j;
	ascii[16] = '\0';
	for (i = 0; i < size; ++i) {
		printf("%02X ", ((unsigned char *)data)[i]);
		if (((unsigned char *)data)[i] >= ' ' && ((unsigned char *)data)[i] <= '~') {
			ascii[i % 16] = ((unsigned char *)data)[i];
		} else {
			ascii[i % 16] = '.';
		}
		if ((i + 1) % 8 == 0 || i + 1 == size) {
			printf(" ");
			if ((i + 1) % 16 == 0) {
				printf("|  %s \n", ascii);
			} else if (i + 1 == size) {
				ascii[(i + 1) % 16] = '\0';
				if ((i + 1) % 16 <= 8) {
					printf(" ");
				}
				for (j = (i + 1) % 16; j < 16; ++j) {
					printf("   ");
				}
				printf("|  %s \n", ascii);
			}
		}
	}
}

/**
 *  ==========================================================================
 *
 *  \brief  Read/Write len bytes from/to block dev
 *
 *  \param [in] fd      block dev file descriptor (returned from open)
 *  \param [in] rw      RW flag: 0 - read, != 0; - write
 *  \param [in] offset  block dev offset [bytes] - RW start position
 *  \param [in] buf     Pointer to the buffer containing the data
 *  \param [in] len     RW size in bytes. Buf must be at least that big
 *
 *  \return  0 on success
 *
 *  ==========================================================================
 */
static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
{
	int r;

	if (lseek64(fd, offset, SEEK_SET) < 0) {
		fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n", offset,
			strerror(errno));
		return -1;
	}

	if (rw)
		r = write(fd, buf, len);
	else
		r = read(fd, buf, len);

	if (r < 0) {
		fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read\n",
			strerror(errno));
	} else {
		if (rw) {
			r = fsync(fd);
			if (r < 0)
				fprintf(stderr, "fsync failed: %s\n", strerror(errno));
		} else {
			r = 0;
		}
	}

	return r;
}

/**
 *  ==========================================================================
 *
 *  \brief  Search within GPT for partition entry with the given name
 *  or it's backup twin (name-bak).
 *
 *  \param [in] ptn_name        Partition name to seek
 *  \param [in] pentries_start  Partition entries array start pointer
 *  \param [in] pentries_end    Partition entries array end pointer
 *  \param [in] pentry_size     Single partition entry size [bytes]
 *
 *  \return  First partition entry pointer that matches the name or null
 *
 *  ==========================================================================
 */
static uint8_t *gpt_pentry_seek(const char *ptn_name, const uint8_t *pentries_start,
				const uint8_t *pentries_end, uint32_t pentry_size)
{
	char *pentry_name;
	unsigned len = strlen(ptn_name);

	for (pentry_name = (char *)(pentries_start + PARTITION_NAME_OFFSET);
	     pentry_name < (char *)pentries_end; pentry_name += pentry_size) {
		char name8[MAX_GPT_NAME_SIZE / 2];
		unsigned i;

		/* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
		for (i = 0; i < sizeof(name8); i++)
			name8[i] = pentry_name[i * 2];
		if (!strncmp(ptn_name, name8, len))
			if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
				return (uint8_t *)(pentry_name - PARTITION_NAME_OFFSET);
	}

	return NULL;
}

// Defined in ufs-bsg.cpp
int32_t set_boot_lun(uint8_t lun_id);

// Switch between using either the primary or the backup
// boot LUN for boot. This is required since UFS boot partitions
// cannot have a backup GPT which is what we use for failsafe
// updates of the other 'critical' partitions. This function will
// not be invoked for emmc targets and on UFS targets is only required
// to be invoked for XBL.
//
// The algorithm to do this is as follows:
//- Find the real block device(eg: /dev/disk/sdb) that corresponds
//  to the /dev/disk/bootdevice/by-name/xbl(bak) symlink
//
//- Once we have the block device 'node' name(sdb in the above example)
//  use this node to to locate the scsi generic device that represents
//  it by checking the file /sys/block/sdb/device/scsi_generic/sgY
//
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
// the boot lun to either LUNA or LUNB
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
{
	struct stat st;
	uint8_t boot_lun_id = 0;
	const char *boot_dev = NULL;
	int ret = -1;

	(void)st;
	(void)boot_dev;

	if (chain == BACKUP_BOOT) {
		boot_lun_id = BOOT_LUN_B_ID;
		if (!stat(XBL_BACKUP, &st))
			boot_dev = XBL_BACKUP;
		else if (!stat(XBL_AB_SECONDARY, &st))
			boot_dev = XBL_AB_SECONDARY;
		else {
			fprintf(stderr, "%s: Failed to locate secondary xbl\n", __func__);
			goto error;
		}
	} else if (chain == NORMAL_BOOT) {
		boot_lun_id = BOOT_LUN_A_ID;
		if (!stat(XBL_PRIMARY, &st))
			boot_dev = XBL_PRIMARY;
		else if (!stat(XBL_AB_PRIMARY, &st))
			boot_dev = XBL_AB_PRIMARY;
		else {
			fprintf(stderr, "%s: Failed to locate primary xbl\n", __func__);
			goto error;
		}
	} else {
		fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
		goto error;
	}
	// We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
	// the same time. If not the current configuration is invalid.
	if ((stat(XBL_PRIMARY, &st) || stat(XBL_BACKUP, &st)) &&
	    (stat(XBL_AB_PRIMARY, &st) || stat(XBL_AB_SECONDARY, &st))) {
		fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n", __func__,
			strerror(errno));
		goto error;
	}
	LOGD("%s: setting %s lun as boot lun\n", __func__, boot_dev);

	if (set_boot_lun(boot_lun_id)) {
		ret = -ENODEV;
		goto error;
	}
	return 0;
error:
	return ret;
}

// Given a parttion name(eg: rpm) get the path to the block device that
// represents the GPT disk the partition resides on. In the case of emmc it
// would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
// through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve
// the path to the LUN from there.
static int get_dev_path_from_partition_name(const char *partname, char *buf, size_t buflen)
{
	char path[GPT_PTN_PATH_MAX] = { 0 };
	int i;

	if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
		fprintf(stderr, "%s: Invalid argument\n", __func__);
		return -1;
	}

	// Need to find the lun that holds partition partname
	snprintf(path, sizeof(path), "%s/%s", BOOT_DEV_DIR, partname);


	buf = realpath(path, buf);
	if (!buf) {
		return -1;
	} else {
		for (i = strlen(buf); i > 0; i--)
			if (!isdigit(buf[i - 1]))
				break;

		if (i >= 2 && buf[i - 1] == 'p' && isdigit(buf[i - 2]))
			i--;

		buf[i] = 0;
	}

	return 0;
}

// Get the block size of the disk represented by decsriptor fd
static uint32_t gpt_get_block_size(int fd)
{
	uint32_t block_size = 0;

	if (fd < 0) {
		fprintf(stderr, "%s: invalid descriptor\n", __func__);
		goto error;
	}

	if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
		fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n", __func__,
			strerror(errno));
		goto error;
	}

	return block_size;
error:
	return 0;
}

// Write the GPT header present in the passed in buffer back to the
// disk represented by fd
static int gpt_set_header(uint8_t *gpt_header, int fd, enum gpt_instance instance)
{
	uint32_t block_size = 0;
	off_t gpt_header_offset = 0;

	if (!gpt_header || fd < 0) {
		fprintf(stderr, "%s: Invalid arguments\n", __func__);
		goto error;
	}

	block_size = gpt_get_block_size(fd);
	LOGD("%s: Block size is : %d\n", __func__, block_size);
	if (block_size == 0) {
		fprintf(stderr, "%s: Failed to get block size\n", __func__);
		goto error;
	}

	if (instance == PRIMARY_GPT)
		gpt_header_offset = block_size;
	else
		gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
	if (gpt_header_offset <= 0) {
		fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
		goto error;
	}

	LOGD("%s: Writing back header to offset %ld\n", __func__, gpt_header_offset);
	if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
		fprintf(stderr, "%s: Failed to write back GPT header\n", __func__);
		goto error;
	}

	return 0;

error:
	return -1;
}

// Read out the GPT headers for the disk that contains the partition partname
static int gpt_get_headers(const char *partname, uint8_t **primary, uint8_t **backup)
{
	uint8_t *hdr = NULL;
	char devpath[GPT_PTN_PATH_MAX] = { 0 };
	off_t hdr_offset = 0;
	uint32_t block_size = 0;
	int instance;
	int fd = -1;

	if (!partname) {
		fprintf(stderr, "%s: Invalid partition name\n", __func__);
		goto error;
	}

	if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath)) != 0) {
		fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, partname);
		goto error;
	}

	fd = open(devpath, O_RDONLY);
	if (fd < 0) {
		fprintf(stderr, "%s: Failed to open %s : %s\n", __func__, devpath, strerror(errno));
		return -1;
	}

	block_size = gpt_get_block_size(fd);
	if (block_size == 0) {
		fprintf(stderr, "%s: Failed to get gpt block size for %s\n", __func__, partname);
		goto error;
	}

	for (instance = PRIMARY_GPT; instance <= SECONDARY_GPT; instance++) {
		hdr = (uint8_t *)calloc(block_size, 1);
		if (!hdr) {
			fprintf(stderr, "%s: Failed to allocate memory for gpt header\n", __func__);
		}
		if (instance == PRIMARY_GPT)
			hdr_offset = block_size;
		else {
			hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
		}
		if (hdr_offset < 0) {
			fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
			goto error;
		}
		if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
			fprintf(stderr, "%s: Failed to read GPT header from device\n", __func__);
			goto error;
		}
		if (instance == PRIMARY_GPT)
			*primary = hdr;
		else
			*backup = hdr;
	}

	close(fd);
	return 0;

error:
	close(fd);
	if (hdr)
		free(hdr);
	return -1;
}

// Returns the partition entry array based on the
// passed in buffer which contains the gpt header.
// The fd here is the descriptor for the 'disk' which
// holds the partition
static uint8_t *gpt_get_pentry_arr(uint8_t *hdr, int fd)
{
	uint64_t pentries_start = 0;
	uint32_t pentry_size = 0;
	uint32_t block_size = 0;
	uint32_t pentries_arr_size = 0;
	uint8_t *pentry_arr = NULL;
	int rc = 0;
	if (!hdr) {
		fprintf(stderr, "%s: Invalid header\n", __func__);
		goto error;
	}
	if (fd < 0) {
		fprintf(stderr, "%s: Invalid fd\n", __func__);
		goto error;
	}
	block_size = gpt_get_block_size(fd);
	if (!block_size) {
		fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
		goto error;
	}
	pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
	pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
	pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
	pentry_arr = (uint8_t *)calloc(1, pentries_arr_size);
	if (!pentry_arr) {
		fprintf(stderr, "%s: Failed to allocate memory for partition array\n", __func__);
		goto error;
	}
	rc = blk_rw(fd, 0, pentries_start, pentry_arr, pentries_arr_size);
	if (rc) {
		fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
		goto error;
	}
	return pentry_arr;
error:
	if (pentry_arr)
		free(pentry_arr);
	return NULL;
}

static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr)
{
	uint32_t block_size = 0;
	uint64_t pentries_start = 0;
	uint32_t pentry_size = 0;
	uint32_t pentries_arr_size = 0;
	int rc = 0;
	if (!hdr || fd < 0 || !arr) {
		fprintf(stderr, "%s: Invalid argument\n", __func__);
		goto error;
	}
	block_size = gpt_get_block_size(fd);
	if (!block_size) {
		fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
		goto error;
	}
	LOGD("%s : Block size is %d\n", __func__, block_size);
	pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
	pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
	pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
	LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64 "\n", __func__,
	     pentries_arr_size, pentries_start);
	LOGD("pentries_start: %lu\n", pentries_start);
	rc = blk_rw(fd, 1, pentries_start, arr, pentries_arr_size);
	if (rc) {
		fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
		goto error;
	}
	return 0;
error:
	return -1;
}

/*
 * Free previously allocated/initialized handle
 * This function is always safe and must be called
 * before discarding the handle.
 * it is called automatically by gpt_disk_get_disk_info()
 */
void gpt_disk_free(struct gpt_disk *disk)
{
	if (!disk)
		return;

	if (disk->hdr) {
		free(disk->hdr);
		disk->hdr = NULL;
	}
	if (disk->hdr_bak) {
		free(disk->hdr_bak);
		disk->hdr_bak = NULL;
	}
	if (disk->pentry_arr) {
		free(disk->pentry_arr);
		disk->pentry_arr = NULL;
	}
	if (disk->pentry_arr_bak) {
		free(disk->pentry_arr_bak);
		disk->pentry_arr_bak = NULL;
	}

	disk->is_initialized = 0;

	return;
}

bool gpt_disk_is_valid(struct gpt_disk *disk)
{
	return disk->is_initialized == GPT_DISK_INIT_MAGIC;
}

/*
 * Check if a partition by-path is for the disk we have info for
 * and populate the blockdev path.
 * e.g. for /dev/disk/by-partlabel/system_a blockdev would be /dev/sda
 */
int partition_is_for_disk(const struct gpt_disk *disk, const char *part, char *blockdev, int blockdev_len)
{
	int ret;

	ret = get_dev_path_from_partition_name(part, blockdev, blockdev_len);
	if (ret) {
		fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, part);
		return -1;
	}

	if (!strcmp(blockdev, disk->devpath)) {
		return true;
	}

	return false;
}

/*
 * fills up the passed in gpt_disk struct with information about the
 * disk represented by path dev. Returns 0 on success and -1 on error.
 */
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk)
{
	int fd = -1, rc;
	uint32_t gpt_header_size = 0;
	char devpath[GPT_PTN_PATH_MAX] = { 0 };

	if (!disk || !dev) {
		fprintf(stderr, "%s: Invalid arguments\n", __func__);
		goto error;
	}

	rc = partition_is_for_disk(disk, dev, devpath, sizeof(devpath));

	if (rc > 0)
		return 0;

	if (rc < 0) {
		fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, dev);
		return -1;
	}

	if (disk->is_initialized == GPT_DISK_INIT_MAGIC) {
		/* Commit any changes to the disk */
		if (gpt_disk_commit(disk)) {
			fprintf(stderr, "Failed to commit disk entry");
			return -1;
		}
		// We already have a valid disk handle. Free it.
		LOGD("%s: Freeing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);
		gpt_disk_free(disk);
	}

	LOGD("%s: Initializing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);

	// devpath popualted by partition_is_for_disk
	strncpy(disk->devpath, devpath, sizeof(disk->devpath));

	if (gpt_get_headers(dev, &disk->hdr, &disk->hdr_bak)) {
		fprintf(stderr, "%s: Failed to get GPT headers\n", __func__);
		goto error;
	}

	assert(disk->hdr != NULL);
	assert(disk->hdr_bak != NULL);

	gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);

	// FIXME: pointer offsets crc bleh
	disk->hdr_crc = efi_crc32(disk->hdr, gpt_header_size);

	disk->hdr_bak_crc = efi_crc32(disk->hdr_bak, gpt_header_size);

	fd = open(disk->devpath, O_RDONLY);
	if (fd < 0) {
		fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
			strerror(errno));
		goto error;
	}

	assert(disk->pentry_arr == NULL);
	disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
	if (!disk->pentry_arr) {
		fprintf(stderr, "%s: Failed to obtain partition entry array\n", __func__);
		goto error;
	}

	assert(disk->pentry_arr_bak == NULL);
	disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
	if (!disk->pentry_arr_bak) {
		fprintf(stderr, "%s: Failed to obtain backup partition entry array\n", __func__);
		goto error;
	}

	disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
	disk->pentry_arr_size = GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) * disk->pentry_size;
	disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
	disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET);
	disk->block_size = gpt_get_block_size(fd);
	close(fd);
	disk->is_initialized = GPT_DISK_INIT_MAGIC;
	return 0;
error:
	if (fd >= 0)
		close(fd);
	return -1;
}

// Get pointer to partition entry from a allocated gpt_disk structure
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname, enum gpt_instance instance)
{
	uint8_t *ptn_arr = NULL;
	if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
		fprintf(stderr, "%s: disk handle not initialised\n", __func__);
		return NULL;
	}
	ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr : disk->pentry_arr_bak;
	return (gpt_pentry_seek(partname, ptn_arr, ptn_arr + disk->pentry_arr_size,
				disk->pentry_size));
}

// Update CRC values for the various components of the gpt_disk
// structure. This function should be called after any of the fields
// have been updated before the structure contents are written back to
// disk.
static int gpt_disk_update_crc(struct gpt_disk *disk)
{
	uint32_t gpt_header_size = 0;
	if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
		fprintf(stderr, "%s: disk not initialised!\n", __func__);
		return -1;
	}

#ifdef DEBUG
	uint32_t old_crc = disk->pentry_arr_crc;
#endif
	// Recalculate the CRC of the primary partiton array
	disk->pentry_arr_crc = efi_crc32(disk->pentry_arr, disk->pentry_arr_size);
	LOGD("%s() disk %8s GPT pentry len %u crc: %08x -> %08x\n", __func__, disk->devpath,
	     disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);

	// DumpHex(disk->pentry_arr, disk->pentry_arr_size);

	// Recalculate the CRC of the backup partition array
	disk->pentry_arr_bak_crc = efi_crc32(disk->pentry_arr_bak, disk->pentry_arr_size);
	LOGD("%s() disk %8s GPT pentry_bak len %u crc: %08x -> %08x\n", __func__, disk->devpath,
	     disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);

	// Update the partition CRC value in the primary GPT header
	PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);

	// Update the partition CRC value in the backup GPT header
	PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET, disk->pentry_arr_bak_crc);

	// Update the CRC value of the primary header
	gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);

	// Header CRC is calculated with its own CRC field set to 0
	PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
	PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
	disk->hdr_crc = efi_crc32(disk->hdr, gpt_header_size);
	disk->hdr_bak_crc = efi_crc32(disk->hdr_bak, gpt_header_size);
	PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
	PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
	return 0;
}

// Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk)
{
	int fd = -1;

	if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
		fprintf(stderr, "%s: Invalid args\n", __func__);
		goto error;
	}

	if (gpt_disk_update_crc(disk)) {
		fprintf(stderr, "%s: Failed to update CRC values\n", __func__);
		goto error;
	}

	fd = open(disk->devpath, O_RDWR);
	if (fd < 0) {
		fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
			strerror(errno));
		goto error;
	}

	LOGD("%s: Writing back primary GPT header\n", __func__);

	// Write the primary header
	if (gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
		fprintf(stderr, "%s: Failed to update primary GPT header\n", __func__);
		goto error;
	}
	LOGD("%s: Writing back primary partition array\n", __func__);

	// Write back the primary partition array
	if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
		fprintf(stderr, "%s: Failed to write primary GPT partition arr\n", __func__);
		goto error;
	}

	// Write the backup header
	if (gpt_set_header(disk->hdr_bak, fd, SECONDARY_GPT) != 0) {
		fprintf(stderr, "%s: Failed to update backup GPT header\n", __func__);
		goto error;
	}
	LOGD("%s: Writing back backup partition array\n", __func__);

	// Write back the backup partition array
	if (gpt_set_pentry_arr(disk->hdr_bak, fd, disk->pentry_arr_bak)) {
		fprintf(stderr, "%s: Failed to write backup GPT partition arr\n", __func__);
		goto error;
	}

	LOGD("%s: Done\n", __func__);

	fsync(fd);
	close(fd);
	return 0;

error:
	if (fd >= 0)
		close(fd);
	return -1;
}

// Determine whether to handle the given partition as eMMC or UFS, using the
// name of the backing device.
//
// Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function
// will tend to prefer UFS behavior. If it incorrectly reports this, then the
// program should exit (e.g. by failing) before making any changes.
bool gpt_utils_is_partition_backed_by_emmc(const char *part)
{
	char devpath[GPT_PTN_PATH_MAX] = { '\0' };

	if (get_dev_path_from_partition_name(part, devpath, sizeof(devpath)))
		return false;

	return !strcmp(devpath, EMMC_DEVICE);
}