1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
/*
* Copyright (c) 2013, The Linux Foundation. All rights reserved.
* Copyright (C) 2021-2022 Caleb Connolly <caleb@connolly.tech>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define _LARGEFILE64_SOURCE /* enable lseek64() */
#include <assert.h>
#include <asm/byteorder.h>
#include <ctype.h>
#include <stdlib.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <stdio.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "gpt-utils.h"
#include "utils.h"
#include "crc32.h"
/* list the names of the backed-up partitions to be swapped */
/* extension used for the backup partitions - tzbak, abootbak, etc. */
#define BAK_PTN_NAME_EXT "bak"
#define XBL_PRIMARY "/dev/disk/by-partlabel/xbl_a" // FIXME
#define XBL_BACKUP "/dev/disk/by-partlabel/xblbak"
#define XBL_AB_PRIMARY "/dev/disk/by-partlabel/xbl_a"
#define XBL_AB_SECONDARY "/dev/disk/by-partlabel/xbl_b"
/* GPT defines */
#define MAX_LUNS 26
// Size of the buffer that needs to be passed to the UFS ioctl
#define UFS_ATTR_DATA_SIZE 32
// This will allow us to get the root lun path from the path to the partition.
// i.e: from /dev/disk/sdaXXX get /dev/disk/sda. The assumption here is that
// the boot critical luns lie between sda to sdz which is acceptable because
// only user added external disks,etc would lie beyond that limit which do not
// contain partitions that interest us here.
#define PATH_TRUNCATE_LOC (sizeof("/dev/sda") - 1)
// From /dev/disk/sda get just sda
#define LUN_NAME_START_LOC (sizeof("/dev/") - 1)
#define BOOT_LUN_A_ID 1
#define BOOT_LUN_B_ID 2
#define GET_4_BYTES(ptr) \
((uint32_t) * ((uint8_t *)(ptr)) | ((uint32_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint32_t) * ((uint8_t *)(ptr) + 2) << 16) | ((uint32_t) * ((uint8_t *)(ptr) + 3) << 24))
#define GET_8_BYTES(ptr) \
((uint64_t) * ((uint8_t *)(ptr)) | ((uint64_t) * ((uint8_t *)(ptr) + 1) << 8) | \
((uint64_t) * ((uint8_t *)(ptr) + 2) << 16) | \
((uint64_t) * ((uint8_t *)(ptr) + 3) << 24) | \
((uint64_t) * ((uint8_t *)(ptr) + 4) << 32) | \
((uint64_t) * ((uint8_t *)(ptr) + 5) << 40) | \
((uint64_t) * ((uint8_t *)(ptr) + 6) << 48) | ((uint64_t) * ((uint8_t *)(ptr) + 7) << 56))
#define PUT_4_BYTES(ptr, y) \
*((uint8_t *)(ptr)) = (y)&0xff; \
*((uint8_t *)(ptr) + 1) = ((y) >> 8) & 0xff; \
*((uint8_t *)(ptr) + 2) = ((y) >> 16) & 0xff; \
*((uint8_t *)(ptr) + 3) = ((y) >> 24) & 0xff;
enum gpt_state { GPT_OK = 0, GPT_BAD_SIGNATURE, GPT_BAD_CRC };
// List of LUN's containing boot critical images.
// Required in the case of UFS devices
struct update_data {
char lun_list[MAX_LUNS][GPT_PTN_PATH_MAX];
uint32_t num_valid_entries;
};
void DumpHex(const void *data, size_t size)
{
char ascii[17];
size_t i, j;
ascii[16] = '\0';
for (i = 0; i < size; ++i) {
printf("%02X ", ((unsigned char *)data)[i]);
if (((unsigned char *)data)[i] >= ' ' && ((unsigned char *)data)[i] <= '~') {
ascii[i % 16] = ((unsigned char *)data)[i];
} else {
ascii[i % 16] = '.';
}
if ((i + 1) % 8 == 0 || i + 1 == size) {
printf(" ");
if ((i + 1) % 16 == 0) {
printf("| %s \n", ascii);
} else if (i + 1 == size) {
ascii[(i + 1) % 16] = '\0';
if ((i + 1) % 16 <= 8) {
printf(" ");
}
for (j = (i + 1) % 16; j < 16; ++j) {
printf(" ");
}
printf("| %s \n", ascii);
}
}
}
}
/**
* ==========================================================================
*
* \brief Read/Write len bytes from/to block dev
*
* \param [in] fd block dev file descriptor (returned from open)
* \param [in] rw RW flag: 0 - read, != 0; - write
* \param [in] offset block dev offset [bytes] - RW start position
* \param [in] buf Pointer to the buffer containing the data
* \param [in] len RW size in bytes. Buf must be at least that big
*
* \return 0 on success
*
* ==========================================================================
*/
static int blk_rw(int fd, int rw, uint64_t offset, uint8_t *buf, unsigned len)
{
int r;
if (lseek64(fd, offset, SEEK_SET) < 0) {
fprintf(stderr, "block dev lseek64 %" PRIu64 " failed: %s\n", offset,
strerror(errno));
return -1;
}
if (rw)
r = write(fd, buf, len);
else
r = read(fd, buf, len);
if (r < 0) {
fprintf(stderr, "block dev %s failed: %s\n", rw ? "write" : "read\n",
strerror(errno));
} else {
if (rw) {
r = fsync(fd);
if (r < 0)
fprintf(stderr, "fsync failed: %s\n", strerror(errno));
} else {
r = 0;
}
}
return r;
}
/**
* ==========================================================================
*
* \brief Search within GPT for partition entry with the given name
* or it's backup twin (name-bak).
*
* \param [in] ptn_name Partition name to seek
* \param [in] pentries_start Partition entries array start pointer
* \param [in] pentries_end Partition entries array end pointer
* \param [in] pentry_size Single partition entry size [bytes]
*
* \return First partition entry pointer that matches the name or null
*
* ==========================================================================
*/
static uint8_t *gpt_pentry_seek(const char *ptn_name, const uint8_t *pentries_start,
const uint8_t *pentries_end, uint32_t pentry_size)
{
char *pentry_name;
unsigned len = strlen(ptn_name);
for (pentry_name = (char *)(pentries_start + PARTITION_NAME_OFFSET);
pentry_name < (char *)pentries_end; pentry_name += pentry_size) {
char name8[MAX_GPT_NAME_SIZE / 2];
unsigned i;
/* Partition names in GPT are UTF-16 - ignoring UTF-16 2nd byte */
for (i = 0; i < sizeof(name8); i++)
name8[i] = pentry_name[i * 2];
if (!strncmp(ptn_name, name8, len))
if (name8[len] == 0 || !strcmp(&name8[len], BAK_PTN_NAME_EXT))
return (uint8_t *)(pentry_name - PARTITION_NAME_OFFSET);
}
return NULL;
}
// Defined in ufs-bsg.cpp
int32_t set_boot_lun(uint8_t lun_id);
// Switch between using either the primary or the backup
// boot LUN for boot. This is required since UFS boot partitions
// cannot have a backup GPT which is what we use for failsafe
// updates of the other 'critical' partitions. This function will
// not be invoked for emmc targets and on UFS targets is only required
// to be invoked for XBL.
//
// The algorithm to do this is as follows:
//- Find the real block device(eg: /dev/disk/sdb) that corresponds
// to the /dev/disk/bootdevice/by-name/xbl(bak) symlink
//
//- Once we have the block device 'node' name(sdb in the above example)
// use this node to to locate the scsi generic device that represents
// it by checking the file /sys/block/sdb/device/scsi_generic/sgY
//
//- Once we locate sgY we call the query ioctl on /dev/sgy to switch
// the boot lun to either LUNA or LUNB
int gpt_utils_set_xbl_boot_partition(enum boot_chain chain)
{
struct stat st;
uint8_t boot_lun_id = 0;
const char *boot_dev = NULL;
int ret = -1;
(void)st;
(void)boot_dev;
if (chain == BACKUP_BOOT) {
boot_lun_id = BOOT_LUN_B_ID;
if (!stat(XBL_BACKUP, &st))
boot_dev = XBL_BACKUP;
else if (!stat(XBL_AB_SECONDARY, &st))
boot_dev = XBL_AB_SECONDARY;
else {
fprintf(stderr, "%s: Failed to locate secondary xbl\n", __func__);
goto error;
}
} else if (chain == NORMAL_BOOT) {
boot_lun_id = BOOT_LUN_A_ID;
if (!stat(XBL_PRIMARY, &st))
boot_dev = XBL_PRIMARY;
else if (!stat(XBL_AB_PRIMARY, &st))
boot_dev = XBL_AB_PRIMARY;
else {
fprintf(stderr, "%s: Failed to locate primary xbl\n", __func__);
goto error;
}
} else {
fprintf(stderr, "%s: Invalid boot chain id\n", __func__);
goto error;
}
// We need either both xbl and xblbak or both xbl_a and xbl_b to exist at
// the same time. If not the current configuration is invalid.
if ((stat(XBL_PRIMARY, &st) || stat(XBL_BACKUP, &st)) &&
(stat(XBL_AB_PRIMARY, &st) || stat(XBL_AB_SECONDARY, &st))) {
fprintf(stderr, "%s:primary/secondary XBL prt not found(%s)\n", __func__,
strerror(errno));
goto error;
}
LOGD("%s: setting %s lun as boot lun\n", __func__, boot_dev);
if (set_boot_lun(boot_lun_id)) {
ret = -ENODEV;
goto error;
}
return 0;
error:
return ret;
}
// Given a parttion name(eg: rpm) get the path to the block device that
// represents the GPT disk the partition resides on. In the case of emmc it
// would be the default emmc dev(/dev/mmcblk0). In the case of UFS we look
// through the /dev/disk/bootdevice/by-name/ tree for partname, and resolve
// the path to the LUN from there.
static int get_dev_path_from_partition_name(const char *partname, char *buf, size_t buflen)
{
char path[GPT_PTN_PATH_MAX] = { 0 };
int i;
if (!partname || !buf || buflen < ((PATH_TRUNCATE_LOC) + 1)) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
return -1;
}
// Need to find the lun that holds partition partname
snprintf(path, sizeof(path), "%s/%s", BOOT_DEV_DIR, partname);
buf = realpath(path, buf);
if (!buf) {
return -1;
} else {
for (i = strlen(buf); i > 0; i--)
if (!isdigit(buf[i - 1]))
break;
if (i >= 2 && buf[i - 1] == 'p' && isdigit(buf[i - 2]))
i--;
buf[i] = 0;
}
return 0;
}
// Get the block size of the disk represented by decsriptor fd
static uint32_t gpt_get_block_size(int fd)
{
uint32_t block_size = 0;
if (fd < 0) {
fprintf(stderr, "%s: invalid descriptor\n", __func__);
goto error;
}
if (ioctl(fd, BLKSSZGET, &block_size) != 0) {
fprintf(stderr, "%s: Failed to get GPT dev block size : %s\n", __func__,
strerror(errno));
goto error;
}
return block_size;
error:
return 0;
}
// Write the GPT header present in the passed in buffer back to the
// disk represented by fd
static int gpt_set_header(uint8_t *gpt_header, int fd, enum gpt_instance instance)
{
uint32_t block_size = 0;
off_t gpt_header_offset = 0;
if (!gpt_header || fd < 0) {
fprintf(stderr, "%s: Invalid arguments\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
LOGD("%s: Block size is : %d\n", __func__, block_size);
if (block_size == 0) {
fprintf(stderr, "%s: Failed to get block size\n", __func__);
goto error;
}
if (instance == PRIMARY_GPT)
gpt_header_offset = block_size;
else
gpt_header_offset = lseek64(fd, 0, SEEK_END) - block_size;
if (gpt_header_offset <= 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
goto error;
}
LOGD("%s: Writing back header to offset %ld\n", __func__, gpt_header_offset);
if (blk_rw(fd, 1, gpt_header_offset, gpt_header, block_size)) {
fprintf(stderr, "%s: Failed to write back GPT header\n", __func__);
goto error;
}
return 0;
error:
return -1;
}
// Read out the GPT headers for the disk that contains the partition partname
static int gpt_get_headers(const char *partname, uint8_t **primary, uint8_t **backup)
{
uint8_t *hdr = NULL;
char devpath[GPT_PTN_PATH_MAX] = { 0 };
off_t hdr_offset = 0;
uint32_t block_size = 0;
int instance;
int fd = -1;
if (!partname) {
fprintf(stderr, "%s: Invalid partition name\n", __func__);
goto error;
}
if (get_dev_path_from_partition_name(partname, devpath, sizeof(devpath)) != 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, partname);
goto error;
}
fd = open(devpath, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s : %s\n", __func__, devpath, strerror(errno));
return -1;
}
block_size = gpt_get_block_size(fd);
if (block_size == 0) {
fprintf(stderr, "%s: Failed to get gpt block size for %s\n", __func__, partname);
goto error;
}
for (instance = PRIMARY_GPT; instance <= SECONDARY_GPT; instance++) {
hdr = (uint8_t *)calloc(block_size, 1);
if (!hdr) {
fprintf(stderr, "%s: Failed to allocate memory for gpt header\n", __func__);
}
if (instance == PRIMARY_GPT)
hdr_offset = block_size;
else {
hdr_offset = lseek64(fd, 0, SEEK_END) - block_size;
}
if (hdr_offset < 0) {
fprintf(stderr, "%s: Failed to get gpt header offset\n", __func__);
goto error;
}
if (blk_rw(fd, 0, hdr_offset, hdr, block_size)) {
fprintf(stderr, "%s: Failed to read GPT header from device\n", __func__);
goto error;
}
if (instance == PRIMARY_GPT)
*primary = hdr;
else
*backup = hdr;
}
close(fd);
return 0;
error:
close(fd);
if (hdr)
free(hdr);
return -1;
}
// Returns the partition entry array based on the
// passed in buffer which contains the gpt header.
// The fd here is the descriptor for the 'disk' which
// holds the partition
static uint8_t *gpt_get_pentry_arr(uint8_t *hdr, int fd)
{
uint64_t pentries_start = 0;
uint32_t pentry_size = 0;
uint32_t block_size = 0;
uint32_t pentries_arr_size = 0;
uint8_t *pentry_arr = NULL;
int rc = 0;
if (!hdr) {
fprintf(stderr, "%s: Invalid header\n", __func__);
goto error;
}
if (fd < 0) {
fprintf(stderr, "%s: Invalid fd\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
if (!block_size) {
fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
goto error;
}
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
pentry_arr = (uint8_t *)calloc(1, pentries_arr_size);
if (!pentry_arr) {
fprintf(stderr, "%s: Failed to allocate memory for partition array\n", __func__);
goto error;
}
rc = blk_rw(fd, 0, pentries_start, pentry_arr, pentries_arr_size);
if (rc) {
fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
goto error;
}
return pentry_arr;
error:
if (pentry_arr)
free(pentry_arr);
return NULL;
}
static int gpt_set_pentry_arr(uint8_t *hdr, int fd, uint8_t *arr)
{
uint32_t block_size = 0;
uint64_t pentries_start = 0;
uint32_t pentry_size = 0;
uint32_t pentries_arr_size = 0;
int rc = 0;
if (!hdr || fd < 0 || !arr) {
fprintf(stderr, "%s: Invalid argument\n", __func__);
goto error;
}
block_size = gpt_get_block_size(fd);
if (!block_size) {
fprintf(stderr, "%s: Failed to get gpt block size for\n", __func__);
goto error;
}
LOGD("%s : Block size is %d\n", __func__, block_size);
pentries_start = GET_8_BYTES(hdr + PENTRIES_OFFSET) * block_size;
pentry_size = GET_4_BYTES(hdr + PENTRY_SIZE_OFFSET);
pentries_arr_size = GET_4_BYTES(hdr + PARTITION_COUNT_OFFSET) * pentry_size;
LOGD("%s: Writing partition entry array of size %d to offset %" PRIu64 "\n", __func__,
pentries_arr_size, pentries_start);
LOGD("pentries_start: %lu\n", pentries_start);
rc = blk_rw(fd, 1, pentries_start, arr, pentries_arr_size);
if (rc) {
fprintf(stderr, "%s: Failed to read partition entry array\n", __func__);
goto error;
}
return 0;
error:
return -1;
}
/*
* Free previously allocated/initialized handle
* This function is always safe and must be called
* before discarding the handle.
* it is called automatically by gpt_disk_get_disk_info()
*/
void gpt_disk_free(struct gpt_disk *disk)
{
if (!disk)
return;
if (disk->hdr) {
free(disk->hdr);
disk->hdr = NULL;
}
if (disk->hdr_bak) {
free(disk->hdr_bak);
disk->hdr_bak = NULL;
}
if (disk->pentry_arr) {
free(disk->pentry_arr);
disk->pentry_arr = NULL;
}
if (disk->pentry_arr_bak) {
free(disk->pentry_arr_bak);
disk->pentry_arr_bak = NULL;
}
disk->is_initialized = 0;
return;
}
bool gpt_disk_is_valid(struct gpt_disk *disk)
{
return disk->is_initialized == GPT_DISK_INIT_MAGIC;
}
/*
* Check if a partition by-path is for the disk we have info for
* and populate the blockdev path.
* e.g. for /dev/disk/by-partlabel/system_a blockdev would be /dev/sda
*/
int partition_is_for_disk(const struct gpt_disk *disk, const char *part, char *blockdev, int blockdev_len)
{
int ret;
ret = get_dev_path_from_partition_name(part, blockdev, blockdev_len);
if (ret) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, part);
return -1;
}
if (!strcmp(blockdev, disk->devpath)) {
return true;
}
return false;
}
/*
* fills up the passed in gpt_disk struct with information about the
* disk represented by path dev. Returns 0 on success and -1 on error.
*/
int gpt_disk_get_disk_info(const char *dev, struct gpt_disk *disk)
{
int fd = -1, rc;
uint32_t gpt_header_size = 0;
char devpath[GPT_PTN_PATH_MAX] = { 0 };
if (!disk || !dev) {
fprintf(stderr, "%s: Invalid arguments\n", __func__);
goto error;
}
rc = partition_is_for_disk(disk, dev, devpath, sizeof(devpath));
if (rc > 0)
return 0;
if (rc < 0) {
fprintf(stderr, "%s: Failed to resolve path for %s\n", __func__, dev);
return -1;
}
if (disk->is_initialized == GPT_DISK_INIT_MAGIC) {
/* Commit any changes to the disk */
if (gpt_disk_commit(disk)) {
fprintf(stderr, "Failed to commit disk entry");
return -1;
}
// We already have a valid disk handle. Free it.
LOGD("%s: Freeing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);
gpt_disk_free(disk);
}
LOGD("%s: Initializing disk handle for %s... -> %s\n", __func__, disk->devpath, devpath);
// devpath popualted by partition_is_for_disk
strncpy(disk->devpath, devpath, sizeof(disk->devpath));
if (gpt_get_headers(dev, &disk->hdr, &disk->hdr_bak)) {
fprintf(stderr, "%s: Failed to get GPT headers\n", __func__);
goto error;
}
assert(disk->hdr != NULL);
assert(disk->hdr_bak != NULL);
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
// FIXME: pointer offsets crc bleh
disk->hdr_crc = efi_crc32(disk->hdr, gpt_header_size);
disk->hdr_bak_crc = efi_crc32(disk->hdr_bak, gpt_header_size);
fd = open(disk->devpath, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
strerror(errno));
goto error;
}
assert(disk->pentry_arr == NULL);
disk->pentry_arr = gpt_get_pentry_arr(disk->hdr, fd);
if (!disk->pentry_arr) {
fprintf(stderr, "%s: Failed to obtain partition entry array\n", __func__);
goto error;
}
assert(disk->pentry_arr_bak == NULL);
disk->pentry_arr_bak = gpt_get_pentry_arr(disk->hdr_bak, fd);
if (!disk->pentry_arr_bak) {
fprintf(stderr, "%s: Failed to obtain backup partition entry array\n", __func__);
goto error;
}
disk->pentry_size = GET_4_BYTES(disk->hdr + PENTRY_SIZE_OFFSET);
disk->pentry_arr_size = GET_4_BYTES(disk->hdr + PARTITION_COUNT_OFFSET) * disk->pentry_size;
disk->pentry_arr_crc = GET_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET);
disk->pentry_arr_bak_crc = GET_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET);
disk->block_size = gpt_get_block_size(fd);
close(fd);
disk->is_initialized = GPT_DISK_INIT_MAGIC;
return 0;
error:
if (fd >= 0)
close(fd);
return -1;
}
// Get pointer to partition entry from a allocated gpt_disk structure
uint8_t *gpt_disk_get_pentry(struct gpt_disk *disk, const char *partname, enum gpt_instance instance)
{
uint8_t *ptn_arr = NULL;
if (!disk || !partname || disk->is_initialized != GPT_DISK_INIT_MAGIC) {
fprintf(stderr, "%s: disk handle not initialised\n", __func__);
return NULL;
}
ptn_arr = (instance == PRIMARY_GPT) ? disk->pentry_arr : disk->pentry_arr_bak;
return (gpt_pentry_seek(partname, ptn_arr, ptn_arr + disk->pentry_arr_size,
disk->pentry_size));
}
// Update CRC values for the various components of the gpt_disk
// structure. This function should be called after any of the fields
// have been updated before the structure contents are written back to
// disk.
static int gpt_disk_update_crc(struct gpt_disk *disk)
{
uint32_t gpt_header_size = 0;
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
fprintf(stderr, "%s: disk not initialised!\n", __func__);
return -1;
}
#ifdef DEBUG
uint32_t old_crc = disk->pentry_arr_crc;
#endif
// Recalculate the CRC of the primary partiton array
disk->pentry_arr_crc = efi_crc32(disk->pentry_arr, disk->pentry_arr_size);
LOGD("%s() disk %8s GPT pentry len %u crc: %08x -> %08x\n", __func__, disk->devpath,
disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);
// DumpHex(disk->pentry_arr, disk->pentry_arr_size);
// Recalculate the CRC of the backup partition array
disk->pentry_arr_bak_crc = efi_crc32(disk->pentry_arr_bak, disk->pentry_arr_size);
LOGD("%s() disk %8s GPT pentry_bak len %u crc: %08x -> %08x\n", __func__, disk->devpath,
disk->pentry_arr_size, old_crc, disk->pentry_arr_crc);
// Update the partition CRC value in the primary GPT header
PUT_4_BYTES(disk->hdr + PARTITION_CRC_OFFSET, disk->pentry_arr_crc);
// Update the partition CRC value in the backup GPT header
PUT_4_BYTES(disk->hdr_bak + PARTITION_CRC_OFFSET, disk->pentry_arr_bak_crc);
// Update the CRC value of the primary header
gpt_header_size = GET_4_BYTES(disk->hdr + HEADER_SIZE_OFFSET);
// Header CRC is calculated with its own CRC field set to 0
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, 0);
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, 0);
disk->hdr_crc = efi_crc32(disk->hdr, gpt_header_size);
disk->hdr_bak_crc = efi_crc32(disk->hdr_bak, gpt_header_size);
PUT_4_BYTES(disk->hdr + HEADER_CRC_OFFSET, disk->hdr_crc);
PUT_4_BYTES(disk->hdr_bak + HEADER_CRC_OFFSET, disk->hdr_bak_crc);
return 0;
}
// Write the contents of struct gpt_disk back to the actual disk
int gpt_disk_commit(struct gpt_disk *disk)
{
int fd = -1;
if (!disk || (disk->is_initialized != GPT_DISK_INIT_MAGIC)) {
fprintf(stderr, "%s: Invalid args\n", __func__);
goto error;
}
if (gpt_disk_update_crc(disk)) {
fprintf(stderr, "%s: Failed to update CRC values\n", __func__);
goto error;
}
fd = open(disk->devpath, O_RDWR);
if (fd < 0) {
fprintf(stderr, "%s: Failed to open %s: %s\n", __func__, disk->devpath,
strerror(errno));
goto error;
}
LOGD("%s: Writing back primary GPT header\n", __func__);
// Write the primary header
if (gpt_set_header(disk->hdr, fd, PRIMARY_GPT) != 0) {
fprintf(stderr, "%s: Failed to update primary GPT header\n", __func__);
goto error;
}
LOGD("%s: Writing back primary partition array\n", __func__);
// Write back the primary partition array
if (gpt_set_pentry_arr(disk->hdr, fd, disk->pentry_arr)) {
fprintf(stderr, "%s: Failed to write primary GPT partition arr\n", __func__);
goto error;
}
// Write the backup header
if (gpt_set_header(disk->hdr_bak, fd, SECONDARY_GPT) != 0) {
fprintf(stderr, "%s: Failed to update backup GPT header\n", __func__);
goto error;
}
LOGD("%s: Writing back backup partition array\n", __func__);
// Write back the backup partition array
if (gpt_set_pentry_arr(disk->hdr_bak, fd, disk->pentry_arr_bak)) {
fprintf(stderr, "%s: Failed to write backup GPT partition arr\n", __func__);
goto error;
}
LOGD("%s: Done\n", __func__);
fsync(fd);
close(fd);
return 0;
error:
if (fd >= 0)
close(fd);
return -1;
}
// Determine whether to handle the given partition as eMMC or UFS, using the
// name of the backing device.
//
// Note: In undefined cases (i.e. /dev/mmcblk1 and unresolvable), this function
// will tend to prefer UFS behavior. If it incorrectly reports this, then the
// program should exit (e.g. by failing) before making any changes.
bool gpt_utils_is_partition_backed_by_emmc(const char *part)
{
char devpath[GPT_PTN_PATH_MAX] = { '\0' };
if (get_dev_path_from_partition_name(part, devpath, sizeof(devpath)))
return false;
return !strcmp(devpath, EMMC_DEVICE);
}
|